How do you use the square root property to solve this equation #(2x+3)^2 = 25#?

1 Answer
Aug 13, 2015

The solutions are
#color(blue)(x=1,x=-4#

Explanation:

The square root property involves taking the square root of both the terms on either side of the equation.

Applying the same to the given equation:

#sqrt((2x+3)^2)=sqrt(25#

(#sqrt25= color(blue)(+-5#)

So,
#sqrt((2x+3)^2)=color(blue)(+-5#

#(2x+3)=color(blue)(+-5#

Solution 1:
#2x+3 = +5#
Isolating #x#
#2x+3 -color(blue)(3)= +5-color(blue)(3)#
#2x=2#
#color(blue)(x=1#

Solution 2:
#2x+3 = -5#
Isolating #x#
#2x+3 -color(blue)(3)= -5-color(blue)(3)#
#2x=-8#
#color(blue)(x=-4#