Let CB be the cliff . From point A the angle of elevation of the peak C of the cliff is /_CAB=theta'. After going up a distance , AD=k m towards the top of the cliff at an angle,/_DAE =phi,it ls found the angle of elevation /_CDF=alpha.
DF and DE are perpendiculars drawn from D on CB and AB.
Now DE =ksinphi and AE =kcosphi
Let
h="CB the height of the cliff"
and b=BA
For DeltaCAB," "(CB)/(BA)=tantheta
=>b/h=cottheta=>b=hcottheta
Now DF=BE=BA-AE=b-kcosphi
CF=CB-FB=CB-DE=h-ksinphi
For DeltaCDF," "(CF)/(DF)=tanalpha
=>(h-ksinphi)/(b-kcosphi)=tanalpha
=>(h-ksinphi)/(hcottheta-kcosphi)=tanalpha
=>h-htanalphacottheta=ksinphi-kcosphitanalpha
=>h=(k(sinphi-cosphitanalpha))/(1-tanalphacottheta)
=>h=(ksintheta(sinphicosalpha-cosphisinalpha))/(sinthetacosalpha-costhetasinalpha)
=>h=(ksinthetasin(phi-alpha))/(sin(theta-alpha))
=>h=(ksinthetasin(alpha-phi))/(sin(alpha-theta))