How do you find the limit of #f(x)=(secx-1)/x^2# as x approaches 0?

2 Answers
Feb 22, 2015

The answer is: #1/2#.

#lim_(xrarr0)(secx-1)/x^2=lim_(xrarr0)(1/cosx-1)/x^2=#

#lim_(xrarr0)((1-cosx)/cosx)/x^2=lim_(xrarr0)(1-cosx)/(cosx*x^2)=#

#=lim_(xrarr0)1/cosx*(1-cosx)/x^2=1/1*1/2=1/2#,

since

#lim_(xrarr0)(1-cosx)/x^2=1/2# is a particular memorable limit.

Jul 4, 2016

#1/2#

Explanation:

#lim_(x to 0)(secx-1)/x^2=lim_(x to0)(1/cosx-1)/x^2=#

#lim_(x to 0)((1-cosx)/cosx)/x^2=lim_(x to0)(1-cosx)/(cosx*x^2)=#

#=lim_(x to 0)1/cosx*(1-cosx)/x^2#

#=1/cosx* lim_(x to 0)(1-cosx)/x^2#

as #cos x = 1# and is continuous at #x = 0#

#=lim_(x to 0)(1-cosx)/x^2#

now #cos x = 1 - 2 sin^2( x/2)#

#= lim_(x to 0)(1-( 1 - 2 sin^2 (x/2)))/x^2#

#=lim_(x to 0)(2 sin^2 (x/2))/x^2#

#= 2lim_(x to 0)( sin (x/2))/x * ( sin (x/2))/x#

#= 1/2 lim_(x to 0)( sin (x/2))/(x/2) * ( sin (x/2))/(x/2)#

with #u = x/2#

#= 1/2 lim_(u to 0) ( sin (u))/(u) * ( sin (u))/(u)#

#= 1/2 * 1 * 1#

relying on fundamental limit #lim_{x to 0} (sin u}/u = 1#