Infinite Sequences
Topic Page
Infinite Sequences
Questions
-
What is the difference between an infinite sequence and an infinite series?
-
What is the definition of an infinite sequence?
-
How do you Find the limit of an infinite sequence?
-
How do you Find the #n#-th term of the infinite sequence #1,1/4,1/9,1/16,…#?
-
How do you Determine whether an infinite sequence converges or diverges?
-
How do you determine whether the infinite sequence #a_n=(2n)/(n+1)# converges or diverges?
-
How do you determine whether the infinite sequence #a_n=(1+1/n)^n# converges or diverges?
-
How do you determine whether the infinite sequence #a_n=(-1)^n# converges or diverges?
-
How do you Find the #n#-th term of the infinite sequence #1,-2/3,4/9,-8/27,…#?
-
How do you determine whether the infinite sequence #a_n=e^(1/n)# converges or diverges?
-
How do you determine whether the infinite sequence #a_n=arctan(2n)# converges or diverges?
-
How do you determine whether the infinite sequence #a_n=n*cos(n*pi)# converges or diverges?
-
How do you determine whether the infinite sequence #a_n=n+1/n# converges or diverges?
-
How do I find a formula for #s_n# for the sequence -2, 1, 6, 13, 22,...?
-
How do you find a formula for the sequence -2, 1, 6, 13, 22..?
-
What does it mean for a sequence to converge?
-
Does #a_n={(3/n)^(1/n)} #converge? If so what is the limit?
-
Does #a_n=n*{(3/n)^(1/n)} #converge? If so what is the limit?
-
Does #a_n=(5^n)/(1+(6^n) #converge? If so what is the limit?
-
Does #a_n=(2+n+(n^3))/sqrt(2+(n^2)+(n^8)) #converge? If so what is the limit?
-
Does #a_n=(8000n)/(.0001n^2) #converge? If so what is the limit?
-
If #a_n# converges and #a_n >b_n# for all n, does #b_n# converge?
-
If #a_n# converges and #lim_(n->oo) a_n -b_n=c#, where c is a constant, does #b_n# converge?
-
If #a_n# converges and #lim_(n->oo) a_n /b_n=0#, where c is a constant, does #b_n# necessarily converge?
-
Does #a_n=(1 + (n/2))^n # converge?
-
Does #a_n=(n + (n/2))^(1/n) # converge?
-
What is the root test?
-
Does #a_n=1/(n!) # converge?
-
Does #a_n=n^n/(n!) # converge?
-
Does #a_n=n^x/(n!) # converge for any x?
-
Does #a_n=x^n/(n!) # converge for any x?
-
Does #a_n=x^n/(xn!) # converge for any x?
-
Does #a_n=1/(n^2+1) # converge?
-
Does #a_n=lnn/(n^2+1) # converge?
-
Does #a_n=2^n/(n^2+1) # converge?
-
Does #a_n=x^n/n^x # converge for any x?
-
Suppose, #a_n# is monotone and converges and #b_n=(a_n)^2#. Does #b_n# necessarily converge?
-
What does it mean for a sequence to be monotone?
-
What is an alternating sequence?
-
Does #a_n=sin(n)/n # converge?
-
Question #c0aff
-
How do you find the nth term of the sequence #1/2, 1/4, 1/8, 1/16, ...#?
-
How do you find the nth term of the sequence #1/2, 2/3, 3/4, 4/5, ...#?
-
How do you find the nth term of the sequence #2,5,10,17,26,37,...#?
-
How do you find the nth term of the sequence #1, 1 1/2, 1 3/4, 1 7/8, ...#?
-
How do you find the nth term of the sequence #1, 3, 6, 10, 15,...#?
-
How do you find the nth term of the sequence #2, 4, 16, 256, ...#?
-
How do you find the nth term of the sequence #0.6, 0.61, 0.616, 0.6161,...#?
-
How do you determine whether the sequence #a_n=sqrtn# converges, if so how do you find the limit?
-
How do you determine whether the sequence #a_n=(n+2)/n# converges, if so how do you find the limit?
-
How do you determine whether the sequence #a_n=n-n^2/(n+1)# converges, if so how do you find the limit?
-
How do you determine whether the sequence #a_n=n(-1)^n# converges, if so how do you find the limit?
-
How do you determine whether the sequence #a_n=(-1)^n/sqrtn# converges, if so how do you find the limit?
-
How do you determine whether the sequence #a_n=n/(ln(n)^2# converges, if so how do you find the limit?
-
How do you determine whether the sequence #a_n=rootn (n)# converges, if so how do you find the limit?
-
How do you determine whether the sequence #a_n=ln(ln(n))# converges, if so how do you find the limit?
-
How do you determine whether the sequence #a_n=sqrt(n^2+n)-n# converges, if so how do you find the limit?
-
How do you determine whether the sequence #a_n=((n-1)/n)^n# converges, if so how do you find the limit?
-
How do you determine whether the sequence #a_n=(n^3-2)/(n^2+5)# converges, if so how do you find the limit?
-
How do you determine whether the sequence #a_n=(2^n+3^n)/(2^n-3^n)# converges, if so how do you find the limit?
-
How do you determine whether the sequence #a_n=2^n-n^2# converges, if so how do you find the limit?
-
How do you determine whether the sequence #a_n=n!-10^n# converges, if so how do you find the limit?
-
How do you determine whether the sequence #a_n=(n!+2)/((n+1)!+1)# converges, if so how do you find the limit?
-
How do you determine whether the sequence #a_n=(n!)^(1/n)# converges, if so how do you find the limit?
-
How do you determine whether the sequence #a_n=(n+1)^n/n^(n+1)# converges, if so how do you find the limit?
-
How do you determine if #a_n=1+3/7+9/49+...+(3/7)^n+...# converge and find the sums when they exist?
-
How do you determine if #a_n=1-1.1+1.11-1.111+1.1111-...# converge and find the sums when they exist?
-
How do you determine if #a_n=(1-1/8)+(1/8-1/27)+(1/27-1/64)+...+(1/n^3-1/(n+1)^3)+...# converge and find the sums when they exist?
-
How do you determine if #a_n=6+19+3+4/25+8/125+16/625+...+(2/5)^n+...# converge and find the sums when they exist?
-
How do you determine if #Sigma (7^n-6^n)/5^n# from #n=[0,oo)# converge and find the sums when they exist?
-
How do you determine if #Sigma (7*5^n)/6^n# from #n=[0,oo)# converge and find the sums when they exist?
-
How do you determine if #Sigma (2n-3)/(5n+6)# from #n=[0,oo)# converge and find the sums when they exist?
-
Sequence ?
-
Converge sequence !!!?
-
#X_(n+1)-aX_n+2=0#
Which are the set values of "a" for the string "Xn" is descending?
-
Question #351d2
-
Question #8d080
-
We have #f(n)# an string;#ninNN# such that #f(n+1)-f(n)=3f(n)# and #f(0)=-1/2#.How to express #f(n)# according to #n#?
-
Is the sequence #a_n=(1+3/n)^(4n)# convergent or divergent?
-
Check for convergence or divergence in the following sequences?