Products, Sums, Linear Combinations, and Applications
Topic Page
Products, Sums, Linear Combinations, and Applications
Questions
-
How do you use linear combinations to solve trigonometric equations?
-
How do you derive the multiple angles formula?
-
How do you apply trigonometric equations to solve real life problems?
-
How do you use the transformation formulas to go from product to sum and sum to product?
-
What is the sum to product formulas?
-
How do you change #2 \sin 7x \cos 4x# into a sum?
-
How do you solve #sin 4x + sin 2x = 0# using the product and sum formulas?
-
How do you use the sum and double angle identities to find sin3x?
-
How do you simplify #sin^2theta-cos^2theta+tan^2theta# to non-exponential trigonometric functions?
-
How do you simplify #sin^2theta# to non-exponential trigonometric functions?
-
What is #cos^2theta# in terms of non-exponential trigonometric functions?
-
What is #tan^2theta# in terms of non-exponential trigonometric functions?
-
What is #cot^2theta# in terms of non-exponential trigonometric functions?
-
What is #sec^2theta# in terms of non-exponential trigonometric functions?
-
What is #csc^2theta# in terms of non-exponential trigonometric functions?
-
What is #sin^6theta# in terms of non-exponential trigonometric functions?
-
What is #4sin^5theta# in terms of non-exponential trigonometric functions?
-
What is #-sin^4theta# in terms of non-exponential trigonometric functions?
-
What is #cos^2theta-sin^3theta# in terms of non-exponential trigonometric functions?
-
What is #cos^4theta-sin^2theta# in terms of non-exponential trigonometric functions?
-
What is #cos^3theta-6sin^3theta# in terms of non-exponential trigonometric functions?
-
What is #cos^5theta-6sin^3theta# in terms of non-exponential trigonometric functions?
-
What is #cos^4theta+sin^3theta# in terms of non-exponential trigonometric functions?
-
What is #cos^3thetasin^3theta# in terms of non-exponential trigonometric functions?
-
What is #cos^2thetasin^2theta# in terms of non-exponential trigonometric functions?
-
What is #4cos^5thetasin^5theta# in terms of non-exponential trigonometric functions?
-
What is #3tan^2theta# in terms of non-exponential trigonometric functions?
-
What is #2csc^4theta# in terms of non-exponential trigonometric functions?
-
What is #sec^4theta# in terms of non-exponential trigonometric functions?
-
What is #sec^2theta-csc^2theta# in terms of non-exponential trigonometric functions?
-
What is #cos^3theta-cos^2theta+costheta# in terms of non-exponential trigonometric functions?
-
What is #csc^2theta-sec^2theta+cos^3theta# in terms of non-exponential trigonometric functions?
-
What is #3csc^2theta-4sec^2theta+cos^2theta# in terms of non-exponential trigonometric functions?
-
What is #tan^4theta/(1-sin^2theta# in terms of non-exponential trigonometric functions?
-
What is #tan^2theta/(1-sin^2theta# in terms of non-exponential trigonometric functions?
-
What is #tan^2theta/(1-sin^3theta# in terms of non-exponential trigonometric functions?
-
What is #cot^4theta/(1-cos^4theta)# in terms of non-exponential trigonometric functions?
-
What is #tan^2theta/(1-sin^4theta)-csc^2theta# in terms of non-exponential trigonometric functions?
-
How do you express #sin^4theta-cos^3theta # in terms of non-exponential trigonometric functions?
-
How do you express #sin^4theta-cos^3(pi/2-theta ) # in terms of non-exponential trigonometric functions?
-
How do you express #sin^4theta-cos^2theta-tan^2theta # in terms of non-exponential trigonometric functions?
-
How do you express #cot^3theta-cos^2theta-tan^2theta # in terms of non-exponential trigonometric functions?
-
How do you express #cot^3theta-cos^2theta-tan^3theta # in terms of non-exponential trigonometric functions?
-
How do you express #cot^3theta+tan^3theta # in terms of non-exponential trigonometric functions?
-
How do you express #cos^3theta+tan^2theta # in terms of non-exponential trigonometric functions?
-
How do you express #cos^3theta+sec^2theta # in terms of non-exponential trigonometric functions?
-
How do you express #sin^4theta+csc^2theta # in terms of non-exponential trigonometric functions?
-
How do you express #sin^4theta+cot^2theta # in terms of non-exponential trigonometric functions?
-
How do you express #sin^4theta+cot^2theta -cos^4 theta# in terms of non-exponential trigonometric functions?
-
How do you express #sin^4theta - sin^3theta + cos^2theta# in terms of non-exponential trigonometric functions?
-
How do you express #sin^4theta - sin^3theta *cos^2theta# in terms of non-exponential trigonometric functions?
-
Question #79779
-
How do you express #sin(pi/12) * cos(pi/12 ) # without products of trigonometric functions?
-
How do you express #sin(pi/12) * cos(pi/12 ) # without products of trigonometric functions?
-
How do you express #sin(pi/12) * cos(pi/8 ) # without products of trigonometric functions?
-
How do you express #sin(pi/12) * cos(pi/6 ) # without products of trigonometric functions?
-
How do you express #sin(pi/12) * cos(pi/4 ) # without products of trigonometric functions?
-
How do you express #sin(pi/12) * cos(pi/3 ) # without products of trigonometric functions?
-
How do you express #sin(pi/12) * cos((3pi)/8 ) # without products of trigonometric functions?
-
How do you express #sin(pi/12) * cos((5 pi)/12 ) # without products of trigonometric functions?
-
How do you express #sin(pi/12) * cos(( pi)/2 ) # without products of trigonometric functions?
-
How do you express #sin(pi/12) * cos(( 7 pi)/12 ) # without products of trigonometric functions?
-
How do you express #sin(pi/12) * cos(( 11 pi)/12 ) # without products of trigonometric functions?
-
How do you express #sin(pi/12) * cos(( 13 pi)/12 ) # without products of trigonometric functions?
-
How do you express #sin(pi/12) * cos(( 17 pi)/12 ) # without products of trigonometric functions?
-
How do you express #sin(pi/12) * cos(( 19 pi)/12 ) # without products of trigonometric functions?
-
How do you express #sin(pi/12) * cos(( 23 pi)/12 ) # without products of trigonometric functions?
-
How do you express #sin(pi/12) * cos(( 5 pi)/8 ) # without products of trigonometric functions?
-
How do you express #sin(pi/12) * cos(( 13 pi)/8 ) # without products of trigonometric functions?
-
How do you express #sin(pi/ 8 ) * cos(( 13 pi)/8 ) # without products of trigonometric functions?
-
How do you express #sin(pi/ 8 ) * cos(( 5 pi)/8 ) # without products of trigonometric functions?
-
How do you express #sin(pi/ 8 ) * cos(( 5 pi)/6 ) # without products of trigonometric functions?
-
How do you express #sin(pi/ 8 ) * cos(( 7 pi)/6 ) # without using products of trigonometric functions?
-
How do you express #sin(pi/ 8 ) * cos(( pi / 4 ) # without using products of trigonometric functions?
-
How do you express #sin(pi/ 8 ) * cos(( (3pi) / 4 ) # without using products of trigonometric functions?
-
How do you express #sin(pi/ 8 ) * cos(( ( 5 pi) / 4 ) # without using products of trigonometric functions?
-
How do you express #sin(pi/ 8 ) * cos(( ( 7 pi) / 4 ) # without using products of trigonometric functions?
-
How do you express #sin(pi/ 8 ) * cos(( ( pi) / 3 ) # without using products of trigonometric functions?
-
How do you express #sin(pi/ 8 ) * cos(( ( 2 pi) / 3 ) # without using products of trigonometric functions?
-
How do you express #sin(pi/ 8 ) * cos(( ( 4 pi) / 3 ) # without using products of trigonometric functions?
-
How do you express #sin(pi/ 8 ) * cos(( ( 5 pi) / 3 ) # without using products of trigonometric functions?
-
How do you express #sin(pi/ 8 ) * cos(( ( 5 pi) / 12 ) # without using products of trigonometric functions?
-
How do you express #sin(pi/ 8 ) * cos(( ( 7 pi) / 12 ) # without using products of trigonometric functions?
-
How do you express #sin(pi/ 8 ) * cos(pi/2 ) # without using products of trigonometric functions?
-
How do you express #sin(pi/ 6 ) * cos(( ( pi) / 2 ) # without using products of trigonometric functions?
-
How do you express #sin(pi/ 6 ) * cos( ( pi) / 2 ) # without using products of trigonometric functions?
-
How do you express #sin(pi/ 6 ) * cos( (3 pi) / 2 ) # without using products of trigonometric functions?
-
How do you express #sin(pi/ 6 ) * cos( (3 pi) / 8 ) # without using products of trigonometric functions?
-
How do you express #sin(pi/ 6 ) * cos( ( pi) / 8 ) # without using products of trigonometric functions?
-
How do you express #sin(pi/ 6 ) * cos( ( 13 pi) / 8 ) # without using products of trigonometric functions?
-
How do you express #sin(pi/ 6 ) * cos( ( 5 pi) / 8 ) # without using products of trigonometric functions?
-
How do you express #sin(pi/ 6 ) * cos( ( 9 pi) / 8 ) # without using products of trigonometric functions?
-
How do you express #sin(pi/ 6 ) * cos( ( 15 pi) / 8 ) # without using products of trigonometric functions?
-
How do you express #sin(pi/ 6 ) * cos( ( 15 pi) / 12 ) # without using products of trigonometric functions?
-
How do you express #sin(pi/ 6 ) * cos( ( pi) / 12 ) # without using products of trigonometric functions?
-
How do you express #sin(pi/ 6 ) * cos( ( 5 pi) / 12 ) # without using products of trigonometric functions?
-
How do you express #sin(pi/ 6 ) * cos( ( 5 pi) / 4 ) # without using products of trigonometric functions?
-
How do you express #sin(pi/ 6 ) * cos( ( 3 pi) / 4 ) # without using products of trigonometric functions?
-
How do you express #sin(pi/ 4 ) * cos( ( 3 pi) / 4 ) # without using products of trigonometric functions?
-
How do you express #sin(pi/ 4 ) * cos( ( pi) / 4 ) # without using products of trigonometric functions?
-
How do you express #sin(pi/ 4 ) * cos( ( 7 pi) / 4 ) # without using products of trigonometric functions?
-
How do you express #sin(pi/ 4 ) * cos( ( 5 pi) / 4 ) # without using products of trigonometric functions?
-
How do you express #sin(pi/ 4 ) * sin( ( 5 pi) / 3 ) # without using products of trigonometric functions?
-
How do you express #sin(pi/ 4 ) * sin( ( 4 pi) / 3 ) # without using products of trigonometric functions?
-
How do you express #sin(pi/ 4 ) * sin( ( 2 pi) / 3 ) # without using products of trigonometric functions?
-
How do you express #sin(pi/ 4 ) * sin( ( pi) / 3 ) # without using products of trigonometric functions?
-
How do you express #sin(pi/ 4 ) * sin( ( pi) / 12 ) # without using products of trigonometric functions?
-
How do you express #sin(pi/ 4 ) * sin( ( 7 pi) / 12 ) # without using products of trigonometric functions?
-
How do you express #sin(pi/ 4 ) * sin( ( 5 pi) / 12 ) # without using products of trigonometric functions?
-
How do you express #sin(pi/ 4 ) * sin( ( 11 pi) / 12 ) # without using products of trigonometric functions?
-
How do you express #sin(pi/ 4 ) * sin( ( 13 pi) / 12 ) # without using products of trigonometric functions?
-
How do you express #sin(pi/ 4 ) * sin( ( 1 9 pi) / 12 ) # without using products of trigonometric functions?
-
How do you express #sin(pi/ 4 ) * sin( ( 9 pi) / 8 ) # without using products of trigonometric functions?
-
How do you express #sin(pi/ 4 ) * sin( ( 15 pi) / 8 ) # without using products of trigonometric functions?
-
How do you express #sin(pi/ 4 ) * sin( ( 1 3 pi) / 8 ) # without using products of trigonometric functions?
-
How do you express #sin(pi/ 4 ) * sin( ( 3 pi) / 8 ) # without using products of trigonometric functions?
-
How do you express #sin(pi/ 4 ) * sin( ( pi) / 8 ) # without using products of trigonometric functions?
-
How do you express #sin(pi/ 4 ) * sin( ( 7 pi) / 8 ) # without using products of trigonometric functions?
-
How do you express #sin(pi/ 4 ) * sin( ( 5 pi) / 6 ) # without using products of trigonometric functions?
-
How do you express #sin(pi/ 4 ) * sin( ( pi) / 6 ) # without using products of trigonometric functions?
-
How do you express #sin(pi/ 4 ) * sin( ( 23 pi) / 12 ) # without using products of trigonometric functions?
-
How do you express #sin(pi/ 4 ) * sin( ( 19 pi) / 12 ) # without using products of trigonometric functions?
-
How do you express #cos(pi/ 4 ) * sin( ( 19 pi) / 12 ) # without using products of trigonometric functions?
-
How do you express #cos(pi/ 4 ) * sin( ( 13 pi) / 12 ) # without using products of trigonometric functions?
-
How do you express #cos(pi/ 4 ) * sin( ( 13 pi) / 8 ) # without using products of trigonometric functions?
-
How do you express #cos(pi/ 4 ) * sin( ( 15 pi) / 8 ) # without using products of trigonometric functions?
-
How do you express #cos(pi/ 4 ) * sin( ( 5 pi) / 8 ) # without using products of trigonometric functions?
-
How do you express #cos(pi/ 4 ) * sin( ( pi) / 8 ) # without using products of trigonometric functions?
-
How do you express #cos(pi/ 3 ) * sin( ( pi) / 8 ) # without using products of trigonometric functions?
-
How do you express #cos(pi/ 3 ) * sin( ( 3 pi) / 8 ) # without using products of trigonometric functions?
-
How do you express #cos(pi/ 3 ) * sin( ( 5 pi) / 8 ) # without using products of trigonometric functions?
-
How do you express #cos(pi/ 3 ) * sin( ( 7 pi) / 8 ) # without using products of trigonometric functions?
-
How do you express #cos(pi/ 3 ) * sin( ( 9 pi) / 8 ) # without using products of trigonometric functions?
-
How do you express #cos(pi/ 3 ) * sin( ( 11 pi) / 8 ) # without using products of trigonometric functions?
-
How do you express #cos(pi/ 3 ) * sin( ( 15 pi) / 8 ) # without using products of trigonometric functions?
-
How do you express #cos(pi/ 3 ) * sin( ( 5 pi) / 6 ) # without using products of trigonometric functions?
-
How do you express #cos(pi/ 3 ) * sin( ( pi) / 6 ) # without using products of trigonometric functions?
-
How do you express #cos(pi/ 3 ) * cos (( pi) / 6 ) # without using products of trigonometric functions?
-
How do you express #cos(pi/ 2 ) * cos (( pi) / 6 ) # without using products of trigonometric functions?
-
How do you express #cos(pi/ 2 ) * cos (( 5pi) / 6 ) # without using products of trigonometric functions?
-
How do you express #cos(pi/ 2 ) * cos (( 7 pi) / 6 ) # without using products of trigonometric functions?
-
How do you express #cos(pi/ 2 ) * cos (( 11 pi) / 6 ) # without using products of trigonometric functions?
-
How do you express #cos(pi/ 2 ) * cos (( 11 pi) / 12 ) # without using products of trigonometric functions?
-
How do you express #cos(pi/ 2 ) * cos (( 19 pi) / 12 ) # without using products of trigonometric functions?
-
How do you express #cos(pi/ 2 ) * cos (( 19 pi) / 12 ) # without using products of trigonometric functions?
-
How do you express #cos(pi/ 2 ) * cos (( 17 pi) / 12 ) # without using products of trigonometric functions?
-
How do you express #cos(pi/ 2 ) * cos (( 7 pi) / 12 ) # without using products of trigonometric functions?
-
How do you express #cos(pi/ 2 ) * cos (( 5 pi) / 12 ) # without using products of trigonometric functions?
-
How do you express #cos(pi/ 2 ) * cos (( pi) / 12 ) # without using products of trigonometric functions?
-
How do you express #cos(pi/ 2 ) * cos (( 17 pi) / 12 ) # without using products of trigonometric functions?
-
How do you express #cos( 3 pi/ 2 ) * cos (( 17 pi) / 12 ) # without using products of trigonometric functions?
-
How do you express #cos( 3 pi/ 2 ) * cos (( 7 pi) / 12 ) # without using products of trigonometric functions?
-
How do you express #cos( (3 pi)/ 2 ) * cos (( 7 pi) / 8 ) # without using products of trigonometric functions?
-
How do you express #cos( (3 pi)/ 2 ) * cos (( 13 pi) / 8 ) # without using products of trigonometric functions?
-
How do you express #cos( (3 pi)/ 2 ) * cos (( 15 pi) / 8 ) # without using products of trigonometric functions?
-
How do you express #cos( (3 pi)/ 2 ) * cos (( 11 pi) / 8 ) # without using products of trigonometric functions?
-
How do you express #cos( (3 pi)/ 2 ) * cos (( 11 pi) /6 ) # without using products of trigonometric functions?
-
How do you express #cos( (3 pi)/ 2 ) * cos (( pi) /6 ) # without using products of trigonometric functions?
-
How do you express #cos( (3 pi)/ 2 ) * cos (( 5 pi) /6 ) # without using products of trigonometric functions?
-
How do you express #cos( (3 pi)/ 2 ) * cos (( 5 pi) /4 ) # without using products of trigonometric functions?
-
How do you express #cos( (3 pi)/ 2 ) * cos (( 3 pi) /4 ) # without using products of trigonometric functions?
-
How do you express #cos( (3 pi)/ 2 ) * cos (( 3 pi) /8 ) # without using products of trigonometric functions?
-
How do you express #cos( (15 pi)/ 8 ) * cos (( 5 pi) /8 ) # without using products of trigonometric functions?
-
How do you express #cos( (15 pi)/ 8 ) * cos (( 15 pi) /8 ) # without using products of trigonometric functions?
-
How do you express #cos( (15 pi)/ 8 ) * cos (( 13 pi) /8 ) # without using products of trigonometric functions?
-
How do you express #cos( (15 pi)/ 8 ) * cos (( 13 pi) /12 ) # without using products of trigonometric functions?
-
How do you express #cos( (15 pi)/ 8 ) * cos (( 23 pi) /12 ) # without using products of trigonometric functions?
-
How do you express #cos( (15 pi)/ 8 ) * cos (( 5 pi) /12 ) # without using products of trigonometric functions?
-
How do you express #cos( (15 pi)/ 8 ) * cos (( 5 pi) /3 ) # without using products of trigonometric functions?
-
How do you express #cos( (15 pi)/ 8 ) * cos (( 4 pi) /3 ) # without using products of trigonometric functions?
-
How do you express #cos( (15 pi)/ 8 ) * cos (( 2 pi) /3 ) # without using products of trigonometric functions?
-
How do you express #cos( (15 pi)/ 8 ) * cos (( pi) /3 ) # without using products of trigonometric functions?
-
How do you express #cos( (5 pi)/4 ) * cos (( pi) /3 ) # without using products of trigonometric functions?
-
How do you express #cos( (5 pi)/4 ) * cos (( 2 pi) /3 ) # without using products of trigonometric functions?
-
How do you express #cos( (5 pi)/4 ) * cos (( 4 pi) /3 ) # without using products of trigonometric functions?
-
How do you express #cos( (5 pi)/4 ) * cos (( 5 pi) /3 ) # without using products of trigonometric functions?
-
How do you express #cos( (5 pi)/4 ) * cos (( 11 pi) /6 ) # without using products of trigonometric functions?
-
How do you express #cos( (5 pi)/4 ) * cos (( pi) /6 ) # without using products of trigonometric functions?
-
How do you express #cos( (5 pi)/6 ) * cos (( pi) /6 ) # without using products of trigonometric functions?
-
How do you express #cos( (5 pi)/6 ) * cos (( 11 pi) /6 ) # without using products of trigonometric functions?
-
How do you express #cos( (5 pi)/6 ) * cos (( 11 pi) /12 ) # without using products of trigonometric functions?
-
How do you express #cos( (5 pi)/6 ) * cos (( 23 pi) /12 ) # without using products of trigonometric functions?
-
How do you express #cos( (5 pi)/6 ) * cos (( 5 pi) /12 ) # without using products of trigonometric functions?
-
How do you express #cos( (5 pi)/6 ) * cos (( 17 pi) /12 ) # without using products of trigonometric functions?
-
How do you express #cos( (5 pi)/6 ) * cos (( 7 pi) /12 ) # without using products of trigonometric functions?
-
How do you express #cos( (5 pi)/6 ) * cos (( 7 pi) /4 ) # without using products of trigonometric functions?
-
How do you express #cos( (4 pi)/3 ) * cos (( 7 pi) /4 ) # without using products of trigonometric functions?
-
How do you express #cos( (4 pi)/3 ) * cos (( pi) /4 ) # without using products of trigonometric functions?
-
How do you express #cos( (4 pi)/3 ) * cos (( pi) /6 ) # without using products of trigonometric functions?
-
If #A= <7 , 2># and #B= <8, -1 >#, what is #||A+B|| -||A|| -||B||#?
-
If #A= <7 , 2># and #B= <-7, -1 >#, what is #||A+B|| -||A|| -||B||#?
-
If #A= <-3, 6 ># and #B= <-7, -1 >#, what is #||A+B|| -||A|| -||B||#?
-
If #A= <-3, 6 ># and #B= <-2, 5 >#, what is #||A+B|| -||A|| -||B||#?
-
If #A= <-3, -1 ># and #B= <-2, 5 >#, what is #||A+B|| -||A|| -||B||#?
-
If #A= <-3, -1 ># and #B= <4, 5 >#, what is #||A+B|| -||A|| -||B||#?
-
If #A= <6, -1 ># and #B= <4, 5 >#, what is #||A+B|| -||A|| -||B||#?
-
If #A= <6, -1 ># and #B= <-7, 5 >#, what is #||A+B|| -||A|| -||B||#?
-
If #A= <6, -1 ># and #B= <-3, 6>#, what is #||A+B|| -||A|| -||B||#?
-
If #A= <6, -1 ># and #B= <-8, 6>#, what is #||A+B|| -||A|| -||B||#?
-
If #A= <3, -1 ># and #B= <-8, 6>#, what is #||A+B|| -||A|| -||B||#?
-
If #A= <3, -1 ># and #B= <9, 4 >#, what is #||A+B|| -||A|| -||B||#?
-
If #A= <3, -5 ># and #B= <9, 4 >#, what is #||A+B|| -||A|| -||B||#?
-
If #A= <2 -5 ># and #B= <9, 4 >#, what is #||A+B|| -||A|| -||B||#?
-
If #A= <2 , 6 ># and #B= <9, 4 >#, what is #||A+B|| -||A|| -||B||#?
-
If #A= <2 , 6 ># and #B= <-7, 4 >#, what is #||A+B|| -||A|| -||B||#?
-
If #A= <2 , 6 ># and #B= <-1,0 >#, what is #||A+B|| -||A|| -||B||#?
-
If #A= <2 , 6 ># and #B= <-1,6 >#, what is #||A+B|| -||A|| -||B||#?
-
If #A= <2 , 6 ># and #B= <-1,9 >#, what is #||A+B|| -||A|| -||B||#?
-
If #A= <2 , 6 ># and #B= <-1,7 >#, what is #||A+B|| -||A|| -||B||#?
-
If #A= <5 , 6 ># and #B= <-1,7 >#, what is #||A+B|| -||A|| -||B||#?
-
If #A= <5 , 6 ># and #B= <-1,4 >#, what is #||A+B|| -||A|| -||B||#?
-
If #A= <-7, 6 ># and #B= <-1,4 >#, what is #||A+B|| -||A|| -||B||#?
-
If #A= <-7, 6 ># and #B= <-3, 8>#, what is #||A+B|| -||A|| -||B||#?
-
If #A= <-9, 6 ># and #B= <-3, 8>#, what is #||A+B|| -||A|| -||B||#?
-
If #A= <-9, 2 ># and #B= <-3, 8>#, what is #||A+B|| -||A|| -||B||#?
-
If #A= <-1, 2 ># and #B= <-3, 8>#, what is #||A+B|| -||A|| -||B||#?
-
If #A= <-1, 2 ># and #B= <-3, 4>#, what is #||A+B|| -||A|| -||B||#?
-
If #A= <-2, 2 ># and #B= <3, 4>#, what is #||A+B|| -||A|| -||B||#?
-
If #A= <-2, 2 ># and #B= <9, 4>#, what is #||A+B|| -||A|| -||B||#?
-
Question #50f9b
-
How do you show that #cos 2theta = 1-2sin^2 theta# ?
-
Question #e4968
-
Question #68f30
-
How will you prove the formula
#sin(A+B)=sinAcosB+cosAsinB# using formula of scalar product of two vectors?
-
Question #dbaf9
-
Question #c86cf
-
Question #09e1e
-
Question #52e7f
-
Question #abcc5
-
Question #81ed9
-
Question #81ef5
-
Question #0d026
-
Question #12d17
-
Question #12d43
-
Question #c4250
-
Question #abd69
-
Question #0d91d
-
Using the identity #cos(A+B) = cosAcosB - sinAsinB#, how do you prove that #1/4cos(3A) = cos^3A - 3/4cosA#?
-
How can I do the following questions?
-
Question #c42b1
-
Question #2f5ac
-
Prove that #(cosA+sinA)/(cosA-sinA)+(cosA-sinA)/(cosA+sinA)=2sec2A#?
-
Question #2b93c
-
How will you prove the formula
#sin3A=3sinA-4sin^3A# using only the identity
#sin(A+B)=sinAcosB+cosAsinB#?
-
Question #da364
-
Question #5b04e
-
Question #c2e32
-
Question #e40f1
-
Derive the sine sum formula using the geometrical construction given in the figure?
-
The geometric mean of two numbers #a and b# is #sqrt(ab)#. Construct the geometric mean using compass and straight edge method?
-
Question #53010
-
Question #bb853
-
Question #14b3d
-
Question #f282e
-
Question #9440f
-
If #sinx=1/6#, find #cos(x-pi/2)#?
-
Question #c3a08
-
Convert #5cos((5pi)/3)cos((5pi)/3)# as a sum of trigonometric ratios?
-
Find the range of #sinx(sinx+cosx)#?
-
Question #e1576
-
Question #16bbf