Common Logs
Topic Page
Common Logs
Questions
-
What is the common logarithm of 10?
-
How do I find the common logarithm of a number?
-
What is a common logarithm or common log?
-
What are common mistakes students make with common log?
-
How do I find the common logarithm of 589,000?
-
How do I find the number whose common logarithm is 2.6025?
-
What is the common logarithm of 54.29?
-
What is the value of the common logarithm log 10,000?
-
What is #log_10 10#?
-
How do I work in #log_10# in Excel?
-
How to find logs in base 10 on a TI-89?
-
How do I work in #log_10# without a calculator?
-
How do I find #log 10#?
-
How do I find the value of #log 1000#?
-
How do I find the value of #log 100#?
-
What is the base of a logarithm if no base is given?
-
What numbers would the base-10 logarithm of 270 fall between?
-
What is the base-10 logarithm of 2?
-
What is the logarithm of 0.001 in base 10?
-
How do you find the exact value of #log_3(81)#?
-
How do you use change of base to simplify #log_7 83#?
-
How do you evaluate the expression #log_2 40-log_2 16-log_2 20#?
-
How do you write the logarithmic expression as the sum, difference, or multiple of logarithms and simplify as much as possible for #log_5(25/x)#?
-
How do you write the logarithmic expression as the sum, difference, or multiple of logarithms and simplify as much as possible for #log_4(sqrt x / 16)#?
-
How do you write the logarithmic expression as the sum, difference, or multiple of logarithms and simplify as much as possible for #log(9x^3)#?
-
How do you write the logarithmic expressions as a single logarithm #2log_2)6 - 4)log_2y#?
-
How do you write the logarithmic expressions as a single logarithm #ln(x+2) - 2ln(x)#?
-
How do you use the properties of logarithms to write the expression #log(9vx^8y^10/z^9)#in terms of the logarithms of x,y, and z?
-
How do you use properties of Logarithms to rewrite the following as the logarithm of a single number #log 7 + log 3#?
-
How do you use properties of logarithms to write #ln(2/3)# in terms of a and b if #ln2 = a# and #ln3 = b#?
-
How do you use properties of Logarithms to rewrite the following as the logarithm of a single number (no decimal values) #2 log 7 + log 3#?
-
How do you use the properties of logarithms to rewrite and simplify the logarithmic expression of #log (7/100)#?
-
How do you use the properties of logarithms to rewrite and simplify the logarithmic expression of #log2 (7^2 * 4^7)#?
-
How do you use the properties of logarithms to rewrite and simplify the logarithmic expression of #log2^4-log2^16#?
-
How do you use the properties of logarithms to rewrite and simplify the logarithmic expression of #2log8^4-1/3log8^8#?
-
How do you use the properties of logarithms to rewrite(expand) each logarithmic expression #log(3x^3 y^2)#?
-
Based on the estimates log(2) = .03 and log(5) = .7, how do you use properties of logarithms to find approximate values for #log(80)#?
-
Based on the estimates log(2) = .03 and log(5) = .7, how do you use properties of logarithms to find approximate values for #log(0.25)#?
-
Based on the estimates log(2) = .03 and log(5) = .7, how do you use properties of logarithms to find approximate values for #log_5(2)#?
-
How do you simplify #log5(x + 4) -log5(x + 1)#?
-
How do you evaluate #log 1 + log 100#?
-
How do you simplify #log x + log (x^2 - 196) - log 2 - log (x - 14)#?
-
How do you expand #log (1/ABC) #?
-
What is the difference between common and natural logarithms?
-
Question #7f5ff
-
How do you condense # log(5) - log(x) - log(x^3) + log(7)#?
-
How do you condense #5logy - 6log2x - .5logz#?
-
How do you expand #log_11 (11/y)#?
-
How do you expand #log_3 (9x)#?
-
How do you condense #2 ln x + 3 ln y - 6 ln z#?
-
How do you condense #ln2+2ln3-ln18#?
-
How do you simplify #e^3ln(t-1)#?
-
How do you simplify #ln(e^4x^(3t))#?
-
How do you simplify #ln(1/e)^6-4t#?
-
How do you simplify #64^(log_4 (8y))#?
-
How do you expand #log (6*11)#?
-
How do you expand #log (6/11)^5#?
-
How do you evalute #log3^9+log3^36-log3^4#?
-
How do you evalute #log_5 (1/25)#?
-
How do you simplify #log_7 9x+log_7x-3log_7 x#?
-
How do you simplify #log_5 (17/8) log_5 (51/16)#?
-
How do you simplify #log (x+6)=1-log(x-5)#?
-
How do I solve 'log(base 10) 5' without using the calculator?
-
If log base 10 (2) = 0.301 & log base 10 (3) = 0.477, what does log base 10 (15) =?
-
What is the logarithm(to the base 10) of 1000?
-
What is #Log_10 3#?
-
What is # log_10(10^(1/2))#?
-
How do you evaluate #Log_10 (1/10^x)#?
-
How do you solve #3^(x-2)=13^(4x)#?
-
How do you solve #log_10 4+log_10 25#?
-
How do you solve #Log_10 x = -2#?
-
How do you solve # log_10(x-1) - log_10(x+1) = 1#?
-
How do you solve # 10 log _ 10 (x+21) +log _ 10 (x)= 2#?
-
How do you solve #13^(x-3) = 7^(-8x)#?
-
How do you solve #log_10 4#?
-
How do you solve #log_10 0.01#?
-
How do you solve #−10 + log_ 3 (n + 3) = −10#?
-
How do you solve #log_10 200!#?
-
How do you solve #log_10 1#?
-
How do you solve #log_10 30#?
-
How do you solve #log_10 2#?
-
How do you solve #log_10 5#?
-
How do you simplify #4^(log_2 [log_ 2(x^2+24x))]#?
-
How do you solve #log_4 x^2 - log_4 (x+1) = 5#?
-
How do you simplify #2^(log_2(12)) #?
-
How do you simplify #(log 49)/(log 7)#?
-
How do you condense # 1/2 log_2 (x^4 )+ 1/4 log_2(x^4) - 1/6 log_2 x#?
-
How do you solve # 2 log 3 + log x = log 36#?
-
How do you simplify #Log(100.0/5.7)#?
-
How do you solve #(log_x (7)(log_7 (5)) = 6#?
-
How do you simplify #2log 3+ log4-log6#?
-
How do you simplify #log 4 + log 5 - log 2#?
-
How do you evaluate #log_3(27)#?
-
How do you expand #log N^3#?
-
How do you expand #log (10/y)#?
-
How do you condense #2log3 +3log2 - log6#?
-
How do you simplify # log10^9 + 10^log5#?
-
How do you simplify #3 log_b m – 2 log_b n#?
-
How do you simplify #log_ 5 sqrt2^2 #?
-
How do you simplify #log_x sqrt3 = ¼#?
-
How do you expand #log ([sqrt(x+1)]/(x^2+1))#?
-
How do you expand # log x (x^2+1)^(-.5)#?
-
How do you evaluate #log_10 10,000#?
-
How do you evaluate #log_[6](144) - log_[6](4)#?
-
How do you evaluate #log_[3]sqrt(18) + log_[3]sqrt(24) - log_[3](12)#?
-
How do you evaluate #log_3(1/127)#?
-
How do you evaluate #log_16(1/4)#?
-
How do you evaluate #log_49 7 + log_27 (1/9) div log_64 (1/32) - log_(3/2) (27/8)#?
-
How do you evaluate #log (1/100)#?
-
How do you evaluate #log_6 ( 1296 )#?
-
How do you evaluate #((log_3 (1/27)) - (log_16 4))/((log_5 9)(log_5 125))#?
-
How do you evaluate #Log_sqrt3 243 #?
-
How do you evaluate #log_8 64#?
-
How do you evaluate #2 log_3 12 - 2 log_3 4#?
-
How do you evaluate #log_2 4^22#?
-
How do you evaluate #log_2 (0.25)#?
-
How do you evaluate #(log_(10)x)^2#?
-
How do you evaluate #log_3 11#?
-
How do you evaluate #log_9(3)#?
-
How do you evaluate #log_(3)36-log_(3)4#?
-
How do you evaluate #log0.5^19#?
-
How do you evaluate #log_sqrt7 49#?
-
How do you evaluate #log_8 12#?
-
How do you evaluate #log_( 1/4)16#?
-
How do you evaluate # log10^-2#?
-
How do you evaluate # log0.01 #?
-
How do you evaluate # log_10 200 - log_10 2#?
-
How do you evaluate #2 log_2 2 + log_2 8#?
-
How do you evaluate #log_5 5 = log_5 25 - log_2 8#?
-
How do you evaluate #1/2 log_2 64 + 1/3 log_5 125#?
-
How do you evaluate #log_(3) 2 times log_(2) 27#?
-
How do you condense # log 250 + log 4#?
-
How do you condense #log(3x + 7) - log x#?
-
How do you evaluate # log_6(root5 36)#?
-
How do you evaluate # log(1/sqrt1000)#?
-
How do you evaluate #ln(1/sqrt e^7)#?
-
How do you evaluate #log_9 (1/3)+ 3 log_9 3#?
-
How do you evaluate #log_3 18#?
-
How do you evaluate # Log_3 4#?
-
How do you evaluate #log_3 3root4 [3] #?
-
How do you evaluate #log (-100)#?
-
How do you evaluate #log_7 49#?
-
How do you evaluate #log 0.01 #?
-
How do you evaluate #log_[16]1 #?
-
How do you evaluate #log_(2)32#?
-
How do you evaluate #log 12 – log 3#?
-
How do you evaluate #3log_11 5+log_11 7#?
-
How do you evaluate #log3^4#?
-
How do you evaluate #log 0.001 + log 100#?
-
How do you condense #log(6x)+log(4x)#?
-
How do you condense #2 log(x+2)#?
-
How do you condense #log(x+2)-log(x+5)#?
-
How do you condense #(1/2) log(x+7)#?
-
How do you condense #log (5 x) + log (2 x)#?
-
How do you condense #log (x+6)-log (x+3)#?
-
How do you condense #2 log (x+3)-log (x+2)#?
-
How do you condense #1/2 log (x+4)#?
-
How do you prove #-4log3 + log 3 = log(1/27)#?
-
How do you prove #ln (16/(3x)) = 4ln2 - (ln3 + lnx)#?
-
How do you condense #log_5 (6) - log_5 (m)#?
-
How do you condense #1/3 log_3 x^6 + 1/6 log_3 x^6 - 1/9 log_3 x#?
-
How do you simplify #log_6 (9) + log_6 (4)#?
-
How do you condense #2log(x-3)+log(x+2)-6logx#?
-
How do you simplify #5log 7+5log 12#?
-
How do you simplify #24log X-6log Y#?
-
How do you simplify #log7 7^8#?
-
How do you condense #log(x + 5) - log x#?
-
How do you expand #log_5(2sqrtm/n)#?
-
How do you expand #log AB^2#?
-
How do you solve #Log_3x + log_3(x-8) = log_3(8x)#?
-
How do you simplify #e^lnx#?
-
How do you simplify #log_8 16 + log_8 256#?
-
How do you simplify #log_3 27 + 6log_3 9#?
-
How do you simplify #log_2 64 + 7log_2 4 #?
-
How do you condense #6log_2 (2/3)+2log_2(1/6)-4log_2(2/9)#?
-
How do you condense #2logx-log4-log3+logx#?
-
How do you simplify #3 log_4 4#?
-
How do you condense #3 log_2 t -1/3 log_2 u+4 log_2 v#?
-
How do you solve #log_2 [2^(-13)]#?
-
How do you solve #ln e^(sqrt{2})#?
-
How do you expand #log(x(x^3+9)^(-1/2))#?
-
How do you condense #2log63 + 5log62 - 3log62 #?
-
How do you condense #Logx+log2#?
-
How do you simplify #5^[log_5 (6) + log_5 (7)]#?
-
How do you simplify #e^[log_e^2 (9)]#?
-
How do you solve #log_2 x - log_8 x = 4#?
-
How do you simplify #log_10(1000)+log_10(0.01)#?
-
How do you prove #2/3 log_10 10 + 3/2 log_10 16 - 3/5 log_10 32 = 5 - 5 log_10 5#?
-
How do you simplify #7^ (log_7 9 - log_7 8)#?
-
How do you condense #2 Log5 x - log5 y #?
-
How do you condense #3log(x)+log(4) #?
-
How do you simplify #3^(log_8 27) #?
-
How do you simplify # log216#?
-
How do you solve #log_5 10 - log_5 x6 = 21#?
-
How do you solve #3log_4 n= 6 #?
-
How do you simplify #log_10 (10^(1/2))#?
-
How do you simplify #2 log_10 sqrt(x) + 3 log_10 x^(1/3)#?
-
How do you condense # log_6 25 - log_6 5 #?
-
How do you condense #log_4 60 - log_4 4 + log_4 x #?
-
How do you condense #1/3log 3x + 2/3log 3x #?
-
How do you condense #log 40 - log 4 #?
-
How do you condense #5ln(x - 2) - ln(x + 2) + 3lnx#?
-
How do you condense #Log_4 (20) - Log_4 (45) + log_4 (144)#?
-
How do you condense #log_5 (240) − log_5 (75) − log_5 (80)#?
-
How do you condense #2 log 6 + log(1/3)#?
-
How do you condense #3 - 2log(2)#?
-
How do you expand #log_7(sqrt x^3 /y)#?
-
How do you condense #2log_3 (x) + 5 log_3 (y) - 4log_3 (z)#?
-
How do you expand #ln (3x^4) #?
-
How do you expand #log 3x^7y#?
-
How do you expand #ln( sqrt(x^4)/sqrt( y^5))#?
-
How do you expand #log_5 ((xy^3)/(z^4))#?
-
How do you condense #Log_b 2 + Log_bX- Log_by#?
-
How do you condense #1/2 Log_ b3 +1/2 Log_bx - 3 Log_b Z#?
-
How do you simplify #log(9/300)#?
-
How do you condense #log4+ log2-log5 #?
-
How do you condense #log r- log t- 2log s#?
-
How do you condense #log_2 4+ 3log_ 2 9#?
-
How do you expand #log _7 (a/b)#?
-
How do you condense #1/2log_8(x+5)-3log_8(y)#?
-
How do you simplify #5 ln (1/e^2)#?
-
How do you solve #3^(1-x)=5^x#?
-
How do you condense #4log(x)-2log((x^2)+1)+2log(x-1) #?
-
How do you calculate #log_2(5)#?
-
How do you graph #log_2 (x)#?
-
How do you calculate #log_6 (2)#?
-
How do you calculate #log_2 (9)#?
-
How do you calculate #log_10 (7)#?
-
How do you calculate #log_4 (93)#?
-
How do you calculate # log_32 64#?
-
How do you calculate # log_5 (1/125) #?
-
How do you graph # log_2(x-4)#?
-
How do you calculate # log_16(3)#?
-
How do you calculate # log_5(13)#?
-
How do you calculate #Log_2(2)#?
-
How do you calculate # log_5 7 * log_7 8 * log_8 625#?
-
How do you calculate #log_9(1/7)#?
-
How do you calculate #log_2 (3.16)#?
-
How do you calculate #log_(1/6) 216#?
-
How do you calculate #log_8 512#?
-
How do you calculate #log_2 512#?
-
How do you calculate #log_16 512#?
-
How do you calculate #log_(1/5) 125#?
-
How do you calculate #log_(1/125) 125#?
-
How do you calculate #log_(1/625) 125#?
-
How do you calculate #log_(7) 49#?
-
How do you calculate #log_(49) 49#?
-
How do you calculate #log_(343) 49#?
-
How do you calculate #Log_2 56 - log_4 49#?
-
How do you calculate #log_(6) 5#?
-
How do you calculate #log_10 1000#?
-
How do you calculate #log_2 8^2 #?
-
How do you calculate #log_2 (16) / log_2 (1/2)#?
-
How do you graph #g(x)= log_6 x#?
-
How do you calculate #log_2(0.5)#?
-
How do you calculate #log_1.041(2)#?
-
How do you calculate #log_5(.04)#?
-
How do you calculate #log_5 25#?
-
How do you calculate # log_5(4) #?
-
How do you calculate #log 25 / log 5#?
-
How do you simplify #In e^8#?
-
How do you simplify #In e#?
-
How do you solve #3 + 5ln x= 10 #?
-
How do you solve #log_5 (x+3)= 3 + log_5 (x-3) #?
-
How do you solve #2log x= log144#?
-
How do you calculate #Log_7 (42 )#?
-
How do you calculate #Log_10 root3(10 )#?
-
How do you calculate #log_2 4 - log_4 2#?
-
How do you calculate #Log_7 9#?
-
How do you calculate #Log_3 63#?
-
How do you calculate #Log_9 49#?
-
How do you calculate #Log_8 2#?
-
How do you calculate #Log_4 14#?
-
How do you calculate #Log_2 64#?
-
How do you solve #log_5 x=-3#?
-
How do you calculate # (log4) / (log2) #?
-
How do you calculate # log_3 sqrt243#?
-
How do you calculate # log_10 5#?
-
How do you calculate # log_2 1#?
-
How do you calculate # log_2 53.64#?
-
How do you solve #Log_(1/4) (x) + log _2 (x^2) =3#?
-
How do you graph #y = -1 + log_2 x#?
-
How do you solve #(1.05)^n=2 #?
-
How do you solve #-2^3 = -8#?
-
How do you solve #log_9 x = 1.5#?
-
How do you solve #8^y = 4^(2x+3)# and #log2y=log2x+4#?
-
How do you solve #(log_5 20^4)*(log_20 5^4)#?
-
How do you calculate #log_5 (18)#?
-
How do you calculate #log_(1/2) (15)#?
-
How do you calculate #log_3 8#?
-
How do you calculate #log_11 (1/sqrt 11)#?
-
How do you calculate # log_3(54)#?
-
How do you calculate # log 49#?
-
How do you calculate # ln 23#?
-
How do you calculate #log_(1/2) 4#?
-
How do you graph #y = log _4 (x) - 3#?
-
How do you calculate #log_3 45 - log_3 9#?
-
How do you simplify #log_2 5 + log_2 x - log_2 10#?
-
How do you simplify #log_2 14 - log_2 7#?
-
How do you simplify #log _(1/2) (9/4)#?
-
How do you simplify #log_2 8#?
-
How do you simplify log_8 12#?
-
How do you simplify #ln 5#?
-
How do you write #log_3 6# as a logarithm of base 2?
-
How do you write #log_6 5# as a logarithm of base 4?
-
How do you evaluate #log_5(1/2)#?
-
How do you solve #log_(1/3) (x^2 + 4x) - log_(1/3) (x^3 - x) = -1#?
-
How do you solve #log_(1/3) (x^2 + 4x) - log_(1/3) (x^3 - x) = -1#?
-
How do you solve #log_(1/2) (x^3 + x) + log_(1/2) (x^4 - 2x) = 1#?
-
How do you evaluate #log_3[6] - log_3[8] + log_ 3[108]#?
-
How to do bases change a formula?
-
How do you use #log10^5=.6990# and #log10^7=.8451# to evaluate the expression# log_10 35#?
-
How do you use #log_10 5=.6990 and log_10 7=.8451# to evaluate the expression# log_10 (7/5)#?
-
How do you use #log_10 7=.8451# to evaluate the expression# log_10 (1 3/7)#?
-
How do you simplify #10^(log sqrt x )#?
-
How do you condense #3 ln x + 5 ln y – 6 ln z#?
-
How do you simplify #7^ (log _(7)9 - log_(7)8)#?
-
How do you evaluate #log_(4) 66 #?
-
How do you evaluate #log_(pi) e #?
-
How do you simplify #ln(e/6)#?
-
How do you expand #log_2 (16/sqrt(x-1))#?
-
How do you simplify #log_4 8#?
-
How do you simplify #log_5 (1/250)#?
-
How do you simplify #ln(5e^6)#?
-
How do you condense #5ln x-1/9 ln y#?
-
How do you expand #log sqrt( 100 x^3 )#?
-
How do you expand #ln(sqrt(((xy^2)/z))#?
-
How do you solve # lnx-ln(x+1)=1#?
-
How do you simplify # log_(5) (1/15)#?
-
How do you condense # ln 3 − 2(ln 4 + ln 8) #?
-
How do you condense # ln 3 − 2 ln(9 + 3) #?
-
How do you expand #log(10,000x) #?
-
How do you condense #ln 3 − 2 ln 5 + ln 10#?
-
How do you condense #ln 3 − 2 ln(6 + 6)#?
-
How do you solve #19 + 2 ln x = 25#?
-
How do you expand #ln(x^2/y^2)#?
-
How do you expand #ln(x/sqrt(x^6+3))#?
-
How do you condense #2log x + 4 log y - 2 log z#?
-
How do you condense #5 log_ (b) x + 6 log _(b) y#?
-
How do you simplify #log_6(6x)#?
-
How do you condense #Ln 3 − 2 ln(8 + 4) #?
-
How do you solve #ln(e^(7x)) = 15 #?
-
How do you solve #(e^3)^(2x) = (e^3)(e^(2x))#?
-
How do you condense #1/2[log_4(x+1)+2log_4(x-1)] + 6log_4x #?
-
How do you condense #2log_3x-3log_3y+log_3 8#?
-
How do you condense #2 log 7 + log 3#?
-
How do you condense #log_2 x + log_2 5#?
-
How do you evaluate #ln (1/e)#?
-
How do you evaluate #10 ^ (2log6)#?
-
How do you evaluate #10 ^ (log3 + log4)#?
-
How do you evaluate #3^ (3log_3 2+ log_3 8)#?
-
How do you evaluate #log_4 80 - log_4 5#?
-
How do you expand #log_2 20#?
-
How do you expand #log_3 48#?
-
How do you expand #log ((x^4)/(x-2))#?
-
How do you expand #log ((x^3 sqrt (x+1))/(x-2)^2)#?
-
How do you condense #(1/2)log_6 9 +log_6 5#?
-
How do you condense #logM - 3logN#?
-
How do you condense #logA - 2logB + 3logC#?
-
How do you condense #(1/3) (2log_B M - log _B N - log_B P)#?
-
How do you condense #log(pi) + 2log r#?
-
How do you condense #ln2 + ln6 - (1/2)ln9#?
-
How do you solve # log_4 (x + 2) = 1/3 log_4 64#?
-
How do you condense #3 logy3 + logy 2#?
-
How do you solve #2logx=1.6#?
-
How do you evaluate #7log79 + log28 #?
-
How do you evaluate #3log312#?
-
How do you condense #l og25 + log2x – log210#?
-
How do you condense #log345 – log39#?
-
How do you condense #log 7 - 2 log 12#?
-
How do you condense #6log_3 u + 6log_3 v #?
-
How do you condense #(2log7)/3#?
-
How do you expand # log(x/y^6)#?
-
How do you expand #log (6/5)^6#?
-
Given Log3=0.4772, log7=0.8451, log5=0.6990, log2=0.3010, how do you evaluate
Log(2/15)?
-
Given Log3=0.4772, log7=0.8451, log5=0.6990, log2=0.3010, how do you evaluate
Log21?
-
How do you condense #2logx-3(logy+2logz)#?
-
How do you solve #5+log(2x+1)=6#?
-
How do you condense #log (x+2) - log x #?
-
How do you condense #log(x+9)-log x #?
-
Suppose #Log_b2=a# and #Log_b3=c#, how do you find #Log_b24#?
-
Suppose #Log_b2=a# and #Log_b3=c#, how do you find #Log_b(72b)#?
-
Suppose #Log_b2=a# and #Log_b3=c#, how do you find #Log_b(4b^2)#?
-
Given log2=.3010 and log3+.4771, how do you evaluate #log(3/2)#?
-
How do you solve #(log(x))^2=4#?
-
How do you prove #(log_(a)x)(log_(x)a)=1#?
-
How do you condense #log_(6)(x+4)+1/2log_(6)x#?
-
How do you evaluate #sqrt(log2* 20-log16) #?
-
How do you condense #(1/2)log x - 5 log y - log z #?
-
How do you solve #5^(2x) = 8#?
-
How do you solve #2^(3x) = 32#?
-
How do you solve #7 + logx = 4#?
-
How do you solve #(log(35 - x^3))/( log( 5 - x ))=3#?
-
How do you evaluate #Log 4 – log 400,000#?
-
How do you solve #log(x+7) - log(x-7)=1#?
-
How do you condense #log(x + 4) - log x#?
-
How do you solve #log_6 2x + log_6 (x + 3) = 2# and find any extraneous solutions?
-
How do you solve #log x = log 5# and find any extraneous solutions?
-
How do you solve #log_6 3x+ log_6 (x-1) =3# and find any extraneous solutions?
-
How do you solve #2*7^(6x) -8 =16# and find any extraneous solutions?
-
How do you solve #10^(x+2) - 12 = 22 # and find any extraneous solutions?
-
How do you solve #10^(-x+4) +7 = 5 # and find any extraneous solutions?
-
How do you solve #3^(-3x+1) = 3^(x-9)# and find any extraneous solutions?
-
How do you solve #8^(2x) = 8^(x+7)# and find any extraneous solutions?
-
How do you solve #7^(2x-3) - 4 = 14# and find any extraneous solutions?
-
How do you solve #log(x-5)=-2#?
-
How do you condense #log_2 4+ 3log_2 9#?
-
How do you condense #log_7 ( a/b)#?
-
How do you solve #log_3[3^(x^2-13x+28)+2/9] = log_2 5#?
-
How do you calculate #log_2 8#?
-
How do you calculate #Log_10[345]#?
-
How do you calculate #log (33,800)#?
-
How do you calculate #log_3 2#?
-
How do you calculate #ln(4096)/ln(4)#?
-
How do you calculate #log _24 356#?
-
How do you calculate #log _2 (1/8)#?
-
How do you calculate #log _3 (1/9)#?
-
How do you calculate #log _6 (1)#?
-
How do you calculate #log _10 (2)#?
-
How do you calculate #log _3 (9)#?
-
How do you calculate #log 1300#?
-
How do you calculate #log_10 10000#?
-
How do you calculate #log_2 10#?
-
How do you calculate #log_5 310#?
-
How do you calculate #log_2 128#?
-
How do you calculate #Log (1024)#?
-
How do you calculate #Log_5 77#?
-
How do you calculate #Log2006#?
-
How do you calculate #log10^3 + log10(y^2)#?
-
How do you calculate #log_10 3+2 log_10y#?
-
How do you calculate # log_7 10#?
-
How do you calculate # log 0.1 #?
-
How do you calculate # log 23.546#?
-
How do you calculate # log 0.00007#?
-
How do you calculate #log 5.14#?
-
How do you calculate #antilog (0.6117 + -3) #?
-
How do you calculate #antilog 0.3010 #?
-
How do you solve #2^(x) + 2^(2x) = 72#?
-
How do you solve #log_9x = 1.5#?
-
How do you calculate #log32#?
-
How do you calculate #log_4 28#?
-
How do you calculate #log0.000678#?
-
How do you calculate #log 4270#?
-
How do you calculate #log 1.485*10^6#?
-
How do you calculate #log_4 (1/16) #?
-
How do you calculate the antilog of 2?
-
How do you calculate the antilog of 6.56?
-
How do you calculate #Log_5 16#?
-
How do you calculate #8^(2/log 2) #?
-
How do you calculate #log _(1/2) (9/4)#?
-
How do you solve #log_[x+3] ((x^3+x-2)/(x))=2#?
-
Given Y= log x, if y = 10, then what is x?
-
How do you solve #y= 2 log(x)#?
-
If #x>y>0# and #2 log(x-y)=log x + log y#, then what does #(x/y)# equal?
-
How do you graph #y=log_5x#?
-
How do you graph #y=log_2 (x-2)#?
-
How do you graph #y=2-log_2 x#?
-
How do you solve #Log_(5)x + log_(3)x = 1#?
-
How do you graph #Y= log ( x + 1 ) - 7#?
-
Can you prove #a^x * a^y = log(xy)#?
-
How do you write the following expression as a single logarithm: log 5 - log x - log y?
-
How do you solve for x and y if log x - log y =2 and log x + log y = 0?
-
If log 3 = x, log 7 = y, log 10 = 1, and A = 3000/49, how do you find log A in terms of x and y?
-
How do you condense #2 log x - 3 log y#?
-
How do you condense #3 log + 4 log y - 2 log z#?
-
What is the inverse of the function #y=log_4 x#?
-
Given the function #y=log(x), 0<x<10#, what is the slope of the graph where #x=5.7#?
-
How do you solve for x and y: #log(x^2y^3)=7# and #log(x/y)=1#?
-
How do you show #x^(log y) = y^(log x)#?
-
How do you solve #Log(x+2)+log(x-1)=4#?
-
If #xy=64# and #y log(x)+x log(y)=2.5#, how do you find #x# and #y#?
-
Is the graph of #log(1/2)^x# always decreasing?
-
How do you solve #log x=-2#?
-
How do you find the inverse of #y= log_6 (x+2)#?
-
How do you find the inverse of #y=log(x+1)#?
-
How do you find the inverse of #y=log(x-3)#?
-
How do you find the inverse of #log(x)=3#?
-
How do you solve #2^x = 5^(x - 2)#?
-
How do you solve #2^(x) - 2^(-x) = 5#?
-
How do you solve #2^x*5=10^x#?
-
How do you condense #6log(x)-log(17)# to a simple logarithm?
-
How do you solve #log 5x=log(2x+9)#?
-
How do you solve #log (10-4x)=log(10-3x)#?
-
How do you solve #log (4p-2)=log(-5p+5)#?
-
How do you solve #log (4k-5)=log(2k-1)#?
-
How do you solve #log (-2a+9)=log(7-4a)#?
-
How do you solve #2log_7 (-2r)=0#?
-
How do you solve #-2log_5(7x)=2#?
-
How do you solve #log_m 2=4#?
-
How do you solve #log_12(v^2+35)=log_12(-12v-1)#?
-
How do you solve #-6log_3(x-3)=-24#?
-
How do you solve #log_9(-11x+2)=log_9(x^2+30)#?
-
How do you solve #log(16+2b)=log(b^2-4b)#?
-
How do you solve #ln(n^2+12)=ln(-9n-2)#?
-
How do you solve #logx+log8=2#?
-
How do you solve #logx-log2=1#?
-
How do you solve #log2+logx=1#?
-
How do you solve #logx+log7=log37#?
-
How do you solve #log_8 2+log_8(4x^2)=1#?
-
How do you solve #log_3(x+6)-log_9x=log_9 2#?
-
How do you solve #log_6(x+1)-log_6x=log_x 29#?
-
How do you solve #log_5 6 +log_5 (2x^2)=log_5 48#?
-
How do you solve #ln2-ln(3x+2)=1#?
-
How do you solve #ln(-3x-1)-ln7=2#?
-
How do you solve #ln(x-3)-ln(x-5)=ln5#?
-
How do you solve #ln(4x+1)-ln3=5#?
-
How do you condense #log_2xy-log_x x^2#?
-
How do you condense #log_2((8x^2)/y)+log_2(2xy)#?
-
How do you condense #log_3 (9xy^2)-log_3 (27xy)#?
-
How do you condense #log_4(xy)^3-log_4(xy)#?
-
How do you condense #log_3 (9x^4)-log_3(3x)^2#?
-
How do you solve #2log_b4+log_b5-log_b10=log_bx#?
-
How do you solve #log_b30-log_b5^2=log_bx#?
-
How do you solve #log_b9+log_bx^2=log_bx#?
-
How do you solve #log_b(x+2)-log_b4=log_b3x#?
-
How do you solve #log_b(x-1)+log_b3=log_bx#?
-
How do you simplify #logx^2-logxy+4logy#?
-
How do you simplify #12e^7div6e^2#?
-
How do you solve #log_4(v+8)=log_4(-4v-2)#?
-
How do you solve #log_17(9-n)=log_17(-4n)#?
-
How do you solve #log_7(-2b+10)=log_7(3b)#?
-
How do you solve #log_19(-5x-6)=log_19(2-3x)#?
-
How do you solve #log_7x-log_7(x-1)=1#?
-
How do you solve #log_6 5-log_6(x-7)=1#?
-
How do you solve #log_7 4-log_7(x-4)=log_7 41#?
-
How do you solve #log_6 log_6(5x)=log_6 17#?
-
How do you solve #log_9 4+log_9(-3x)=2#?
-
How do you solve #log_6(x+8)+log_6 7=2#?
-
How do you solve #log_2 (3x)-log_2 7=3#?
-
How do you solve #log_5 9 - log_5 (x-5)=log_5 45#?
-
How do you solve #log_3 +log_3 (2x)=log_3 56#?
-
How do you solve #log_9 (3x)+log_9 2 =2#?
-
How do you solve #log_3 (8)+log_3(-5x)=3#?
-
How do you solve #log_8 5 -log_8(x-6)=1#?
-
How do you solve #log_3 x-log_3(x-1)=1#?
-
How do you solve #log_7(x-3)-log_7x=3#?
-
How do you solve #log_7 9-log_7(-3x)=2#?
-
How do you solve #log_4 5 - log_4 (-4x)=1#?
-
How do you solve #log_6 x -log_6(x-6)=1#?
-
How do you solve #log_6x-log_6(x+6)=1#?
-
How do you solve #log_4 8 - log_4(x+6)=1#?
-
How do you solve #log_3 x-log_3(x+5)=3#?
-
How do you solve #1/2log_6(16x)=3#?
-
How do you solve #2ln(-x)+7=14#?
-
How do you solve #log_5(2x+15)=log_5(3x)#?
-
How do you solve #lnx+ln(x-2)=1#?
-
How do you solve #lnx+ln(x+3)=1#?
-
How do you solve #log_8(11-6x)=log_8(1-x)#?
-
How do you solve #15+2log_2x=31#?
-
How do you solve #-5+2ln(3x)=5#?
-
How do you solve #6.5log_5(3x)=20#?
-
How do you solve #ln(x+5)=ln(x-1)-ln(x+1)#?
-
How do you solve #ln(5.6-x)=ln(18.4-2.6x)#?
-
How do you solve #10ln100x-3=117#?
-
How do you solve #2^(x+3)=5^(3x-1)#?
-
How do you solve #10^(5x+2)=5^(4-x)#?
-
How do you solve #log_3(x-6)=log_9(2x)#?
-
How do you solve #log_4x=log_8(4x)#?
-
How do you solve #12=10^(x+5)-7#?
-
Question #e10e6
-
Question #b71c3
-
How is this logx=4 done?
-
Question #8a9cf
-
Question #90b6f
-
What is the value of log 43?
-
What is #log_(1/2) 4#?
-
How do you use log tables to find logarithm and the antilogarithm of #445.66# ?
-
Question #db9f4
-
If #log_b x = 2/3log_b 27 + 2 log_b 2 -log_b 3#, what is #x#?
-
Find the value of #log_2[log_2{log_3(log_3 27^3)}]#?
-
How do you solve #log_4 5 - log_4x = log_4(5/4)#?
-
How do you show that this statement is true #log_5 25=2log_5 5#?
-
How do you show that this statement is true #log_16 2*log_2 16=1#?
-
What is the value of #log_2 5# between two consecutive integers?
-
Using the definition of a logarithmic function where #y=log_bx#, why can't the base b equal 1?
-
How do you approximate #log_3 (7/2)# given #log_3 2=0.6310# and #log_3 7=1.7712#?
-
How do you approximate #log_3 (18)# given #log_3 2=0.6310# and #log_3 7=1.7712#?
-
How do you approximate #log_3 (2/3)# given #log_3 2=0.6310# and #log_3 7=1.7712#?
-
How do you approximate #log_5 9# given #log_5 2=0.4307# and #log_5 3=0.6826#?
-
How do you approximate #log_5 8# given #log_5 2=0.4307# and #log_5 3=0.6826#?
-
How do you approximate #log_5 (2/3)# given #log_5 2=0.4307# and #log_5 3=0.6826#?
-
How do you approximate #log_5 (3/2)# given #log_5 2=0.4307# and #log_5 3=0.6826#?
-
How do you approximate #log_5 50# given #log_5 2=0.4307# and #log_5 3=0.6826#?
-
How do you approximate #log_5 30# given #log_5 2=0.4307# and #log_5 3=0.6826#?
-
How do you approximate #log_5 0.5# given #log_5 2=0.4307# and #log_5 3=0.6826#?
-
How do you approximate #log_5 (10/9)# given #log_5 2=0.4307# and #log_5 3=0.6826#?
-
How do you simplify #2log_5 12-log_5 8-2log_5 3#?
-
How do you use a calculator to evaluate #log23#?
-
How do you use a calculator to evaluate #log0.5#?
-
How do you solve #9^x=45#?
-
How do you solve #4^(5n)>30#?
-
How do you solve #3.1^(a-3)=9.42#?
-
How do you express #log_7 5# in terms of common logs?
-
How do you express #log_3 42# in terms of common logs?
-
How do you express #log_2 9# in terms of common logs?
-
How do you use a calculator to evaluate the expression #log5# to four decimal places?
-
How do you use a calculator to evaluate the expression #log12# to four decimal places?
-
How do you use a calculator to evaluate the expression #log7.2# to four decimal places?
-
How do you use a calculator to evaluate the expression #log2.3# to four decimal places?
-
How do you use a calculator to evaluate the expression #log0.8# to four decimal places?
-
How do you use a calculator to evaluate the expression #log0.03# to four decimal places?
-
How do you solve #5^x=52#?
-
How do you solve #4^(3p)=10#?
-
How do you solve #3^(n+3)=14.5#?
-
How do you solve #8.2^(n-3)=42.5#?
-
How do you solve #2.1^(t-5)=9.32#?
-
How do you solve #20^(x^2)=70#?
-
How do you solve #2^(x^2-3)=15#?
-
How do you solve #8^(2n)>52^(4n+3)#?
-
How do you solve #16^(d-4)=3^(3-d)#?
-
How do you solve #5^(5y-2)=2^(2y+1)#?
-
How do you solve #8^(2x-5)=5^(x+1)#?
-
How do you solve #2^n=sqrt(3^(n-2))#?
-
How do you solve #4^x=sqrt(5^(x+2))#?
-
How do you express #log_2 13# in terms of common logarithms?
-
How do you express #log_5 20# in terms of common logarithms?
-
How do you express #log_7 3# in terms of common logarithms?
-
How do you express #log_3 8# in terms of common logarithms?
-
How do you express #log_4 (1.6)^2# in terms of common logarithms?
-
How do you approximate #log_7 16# given #log_7 2=0.3562# and #log_7 3=0.5646#?
-
How do you approximate #log_7 27# given #log_7 3=0.5646#?
-
How do you approximate #log_7 36# given #log_7 2=0.3562# and #log_7 3=0.5646#?
-
How do you express #log_4 68# in common logarithms?
-
How do you express #log_6 0.047# in common logarithms?
-
How do you express #log_50 23# in common logarithms?
-
How do you express #log_2 5# in terms of common logs?
-
How do you express #log_3 10# in terms of common logs?
-
How do you express #log_5 8# in terms of common logs?
-
#log_3(x+12)+log_3(x-12)=4# ?
-
How do you solve #log_x49=2#?
-
How do you solve #log_6 x+log_6 9=log_6 54#?
-
How do you solve #log_8 48-log_8 w=log_8 6#?
-
How do you solve #log_6 216 =x#?
-
How do you solve #log_10 root3(10)=x#?
-
How do you solve #log_12x=1/2log_12 9+1/3log_12 27#?
-
How do you solve #log_5(x+4)+log_5 8=log_5 64#?
-
How do you solve #1/2(log_7x+log_7 8)=log_7 16#?
-
How do you solve #2log_5(x-2)=log_5 36#?
-
How do you evaluate #log424#?
-
How do you evaluate #log0.003#?
-
How do you evaluate #log0.0081#?
-
How do you find the value of #log_12 18# using the change of base formula?
-
How do you solve #2.2^(x-5)=9.32#?
-
How do you solve #6^(x-2)=4^x#?
-
How do you solve #4.3^x<76.2#?
-
How do you solve #12^(x-4)=3^(x-2)#?
-
Given log4=0.6021, log9=0.9542, and log12=1.-792, how do you find log 400,000?
-
Given log4=0.6021, log9=0.9542, and log12=1.-792, how do you find log 0.00009?
-
Given log4=0.6021, log9=0.9542, and log12=1.-792, how do you find log 1.2?
-
Given #log(4)=0.6021#, #log(9)=0.9542#, and #log(12)=1.0792#, how do you find #log(0.06)#?
-
Given log4=0.6021, log9=0.9542, and log12=1.-792, how do you find log 36?
-
Given log4=0.6021, log9=0.9542, and log12=1.-792, how do you find log 108,000?
-
Given log4=0.6021, log9=0.9542, and log12=1.-792, how do you find log 4.096?
-
Given log4=0.6021, log9=0.9542, and log12=1.-792, how do you find log 1800?
-
How do you evaluate log98.2?
-
How do you evaluate #log 894.3#?
-
How do you evaluate #antilog 0.33736#?
-
How do you find the value of #log_2 8# using the change of base formula?
-
How do you find the value of #log_6 24# using the change of base formula?
-
How do you find the value of #log_7 4# using the change of base formula?
-
How do you find the value of #log_0.5 0.0675# using the change of base formula?
-
How do you find the value of #log_(1/2) 15# using the change of base formula?
-
How do you solve the equation #2^x=95#?
-
How do you solve the equation #1/3logx=log8#?
-
How do you solve the equation #0.16^(4+3x)=0.3^(8-x)#?
-
How do you solve the equation #4log(x+3)=9#?
-
How do you solve the equation #0.25=log 16^x#?
-
How do you solve the equation #3^(x-1)<=2^(x-7)#?
-
How do you solve the equation #log_x6>1#?
-
How do you solve the equation #4^(2x-5)<=3^(x-3)#?
-
How do you solve the equation #log_2x=-3#?
-
How do you solve the equation #log_x 243=5#?
-
If #f(x)=log_k(x)#, find #f(k^(-1))# and #f^(-1)(2)#?
-
Question #8252f
-
How do you simplify #log_10(10^3x+1)#?
-
Assuming x and y and z are positive ,use properties of logarithm to write expression as a sum or difference of logarithms or multiples of logarithms.
13.log x + log y
14. log x + log y?
-
How do you expand this logarithm? #log_(4)sqrt(x^3)#
-
How do you expand this logarithm?
-
How do you condense this expression into a single logarithm? #log_(5)x/2+log_(5)y/2+log_(5)z/2#
-
How do you solve #logx+log(x+21)=2#?
-
How do you expand this logarithm?
-
How do you condense #2logx-(3logy+logz)#?
-
How do you solve the equation? #2log_3 (4x-5)= log_3(4x+5) + log_3(4x-3)#
-
How do you solve for x? Give any approximate result to 3 significant digits. Check your answers.
-
Please help me with this logarithmic equation. How do I solve it?
-
Please help me with this logarithmic equation. How do I solve it?
-
How do you solve #Log( 4x - 3) = 2#?
-
How do you solve #log(x-3)+log(x+5)=log9#?
-
If #17^m=6#, what is m?
-
What is the value of #x# in #log(x+ 2)!- log(x + 1)! = 2#?
-
How do you rewrite #log_5x# as a ratio of common logs and natural logs?
-
How do you rewrite #log_(1/5)x# as a ratio of common logs and natural logs?
-
How do you rewrite #log_(1/3)x# as a ratio of common logs and natural logs?
-
How do you rewrite #log_x(3/10)# as a ratio of common logs and natural logs?
-
How do you rewrite #log_x(3/4)# as a ratio of common logs and natural logs?
-
How do you rewrite #log_2.6x# as a ratio of common logs and natural logs?
-
How do you rewrite #log_7.1x# as a ratio of common logs and natural logs?
-
How do you evaluate #log_3 7# using the change of base formula?
-
How do you evaluate #log_7 4# using the change of base formula?
-
How do you evaluate #log_(1/2) 4# using the change of base formula?
-
How do you evaluate #log_(1/2) 5# using the change of base formula?
-
How do you evaluate #log_9 0.4# using the change of base formula?
-
How do you evaluate #log_20 0.125# using the change of base formula?
-
How do you evaluate #log_15 1250# using the change of base formula?
-
How do you evaluate #log_3 0.015# using the change of base formula?
-
How do you use the properties of logarithms to expand #log_4 (5x)#?
-
How do you use the properties of logarithms to expand #log_3 (10z)#?
-
How do you use the properties of logarithms to expand #log_8 (x^4)#?
-
How do you use the properties of logarithms to expand #log_10 (y/2)#?
-
How do you use the properties of logarithms to expand #log_5 (5/x)#?
-
How do you use the properties of logarithms to expand #lnroot3(t)#?
-
How do you use the properties of logarithms to expand #lnxyz^2#?
-
How do you use the properties of logarithms to expand #log_10 (4x^2y)#?
-
How do you use the properties of logarithms to expand #lnz(z-1)^2#?
-
How do you use the properties of logarithms to expand #ln((x^2-1)/x^3)#?
-
How do you use the properties of logarithms to expand #log_3(sqrt(a-1)/9)#?
-
How do you use the properties of logarithms to expand #ln (6/sqrt(x^2+1))#?
-
How do you use the properties of logarithms to expand #lnroot3(x/y)#?
-
How do you use the properties of logarithms to expand #lnroot3(x^2/y^3)#?
-
How do you use the properties of logarithms to expand #ln((x^4sqrty)/z^5)#?
-
How do you use the properties of logarithms to expand #log_5 (x^2/(y^2z^3))#?
-
How do you use the properties of logarithms to expand #log_10((xy^4)/z^3)#?
-
How do you use the properties of logarithms to expand #lnroot4(x^3(x^2+3))#?
-
How do you use the properties of logarithms to expand #lnsqrt(x^2(x+2))#?
-
How do you condense #lnx+ln3#?
-
How do you condense #lny+lnt#?
-
How do you condense #log_4z-log_4y#?
-
How do you condense #log_5 8-log_5t#?
-
How do you condense #2log_2(x+4)#?
-
How do you condense #2/3log_7(z-2)#?
-
How do you condense #1/4log_3(5x)#?
-
How do you condense #lnx-3ln(x+1)#?
-
How do you condense #2ln8+5ln(z-4)#?
-
How do you condense #3log_3x+4log_3y-4log_3z#?
-
How do you condense #1/3(2ln(x+3)+lnx-ln(x^2-1))#?
-
How do you condense #2(3lnx-ln(x+1)-ln(x-1))#?
-
How do you condense #1/3(log_8y+2log_8(y+4))-log_8(y-1)#?
-
How do you condense #1/2(log_4(x+1)+2log_4(x-1))+6log_4x#?
-
How do you simplify #log_2 (4^2*3^4)#?
-
Question #c11ad
-
How do you condense #1/4log_3a+5log_3b-log_3c#?
-
If log2= a and log3= b evaluate log(0.375)?
-
If #log 2=a# and #log 3 = b#, evaluate #log(sqrt60sqrt2)#?
-
If log5 x - log5(x - 2) = 3, then the value of x, to the nearest hundredth, is?
-
Question #7d8c4
-
Question #32c44
-
Solve: #2=log_6x + log_6 (x+9)# ?
-
How do you solve #0.38 = log x# ?
-
How do you expand #\log \sqrt { x ^ { 4} y }#?
-
What is #log 50# to #3# decimal places?
-
What is the value of #x# if #log_6 48 = log_6(x + 7) + log_6(x - 1)#?
-
Question #fcdaf
-
How do you find #\log _ { 6} ( x + 4) = \log _ { 6} 7#?
-
Find #12log3#? What does it tell us?
-
How can you calculate the value of #log(0.9863)# ?
-
How do I solve #log_sqrt5##0.2#?
-
How do I solve #log_0.25[ (log_2 3)(log_3 4)]# ?
-
How do I solve #(log_3 64) *(log_2 (1/27))# ?
-
How do I solve #log_2 7 = log_2 (7/16)#?
-
How do I solve #log_(2/3) (8/27)#?
-
How do I solve #3^(2x) - 5(3^x)=-6#?
-
How do I solve #2 xx 3^x = 7 xx 5^x#?
-
How do I solve #(2^x)^x=10#?
-
Solve for #x#, given #3 log^2 (x-1) - 10 log (x-1) = -3#?
-
Solve for #x#, given #x^((log_5 x)-2) = (x^2/(125))# ?
-
How do I solve #log_2 5x+4=y?#