Function Notation
Topic Page
Function Notation
Questions
-
How do you find the output of the function #y=3x-8# if the input is -2?
-
What does #f(x)=y# mean?
-
How do you write the total cost of oranges in function notation, if each orange cost $3?
-
How do you rewrite #s=2t+6# in function notation?
-
How do you find the value of #f(-9)# for #f(x)=x^2+2#?
-
What does a dependent and independent variable mean?
-
What is the difference between an equation written in function notation and one that is not?
-
How do you evaluate function notation?
-
What is Function Notation?
-
How do you write equations in function notation?
-
If #f(x)=4x^3-4x^2+10# then how do you find #f(-2)#?
-
How do you know if #y=2x+7# is a function?
-
If #y^2=3x-7#, is y a function of x?
-
How do find the value of # 2f ( 1 ) + 3g( 4 )# if #f ( x ) = 3x# and #g ( x ) = - 4x^2#?
-
How do you find the function rule if x is -1, 0, 1, 2 and y is 5, 6, 7, 8?
-
How do you use substitution to find #x=-2# for #f(x) = -x^4+8x^3+13x-4#?
-
Given: #p(x) = -5absx + abs(-x + 1#, #h(x) = -x^2 - 3x#, and #g(x) = 5 - sqrt(x+30)#, how do you find h(-4) ?
-
Given: #p(x) = -5absx + abs(-x + 1#, #h(x) = -x^2 - 3x#, and #g(x) = 5 - sqrt(x+30)#, how do you find p(-2)?
-
Given: #p(x) = -5absx + abs(-x + 1#, #h(x) = -x^2 - 3x#, and #g(x) = 5 - sqrt(x+30)#, how do you find g(6)?
-
Given: #p(x) = -5absx + abs(-x + 1#, #h(x) = -x^2 - 3x#, and #g(x) = 5 - sqrt(x+30)#, how do you find g(-34)?
-
Given: #p(x) = -5absx + abs(-x + 1#, #h(x) = -x^2 - 3x#, and #g(x) = 5 - sqrt(x+30)#, how do you find p(3)?
-
Given: #p(x) = -5absx + abs(-x + 1#, #h(x) = -x^2 - 3x#, and #g(x) = 5 - sqrt(x+30)#, how do you find h(4)?
-
Given: #f(x) = 2+ sqrt(-3x+1)#, #q(x) = (5x)/(x+2)#, and #m(x) = abs(7 - x^2) + x#, how do you find q(10)?
-
Given: #f(x) = 2+ sqrt(-3x+1)#, #q(x) = (5x)/(x+2)#, and #m(x) = abs(7 - x^2) + x#, how do you find m(-3)?
-
Given: #f(x) = 2+ sqrt(-3x+1)#, #q(x) = (5x)/(x+2)#, and #m(x) = abs(7 - x^2) + x#, how do you find m(3)?
-
Given: #f(x) = 2+ sqrt(-3x+1)#, #q(x) = (5x)/(x+2)#, and #m(x) = abs(7 - x^2) + x#, how do you find f(-5)?
-
Given: #f(x) = 2+ sqrt(-3x+1)#, #q(x) = (5x)/(x+2)#, and #m(x) = abs(7 - x^2) + x#, how do you find #q(-2)#?
-
Given: #f(x) = 2+ sqrt(-3x+1)#, #q(x) = (5x)/(x+2)#, and #m(x) = abs(7 - x^2) + x#, how do you find f(-33)?
-
If #f(x)= 2x+1#, what is #f(x+2)?
-
If #f(x)= 2x+1#, what is #2f(x+1)?
-
If #f(x)=x^3-7x^2+5x#, how do you find all values for f(x)=-1?
-
If #g(x) = 2x-5#, how do you find g(1/3)?
-
If #g(x) = 2x-5#, how do you find g(x)=1/3?
-
How do you write the equation in function notation {(-3, -5) (-2, -3) (0, 1)}?
-
How do you write #2x+3y=1200# in a function notation?
-
How do you write the equation using function notation that goes through (-2,-5); perpendicular to #3x + 5y = -17#?
-
Given #g(x) = -3x +1#, #f(x) = x^2 +7#, #h(x) = 12/x#, how do you find h(a)?
-
Given #g(x) = -3x +1#, #f(x) = x^2 +7#, #h(x) = 12/x#, how do you find f(h(x))?
-
How do you write #3x+2y=6# in function notation?
-
How do you find an equation of the line that passes through (3,-1) and (-2,9) and write the equation using function notation?
-
How do you write #g: x - 12 - 2x# in function notation?
-
How do I find an equation of the line using function notation that goes through (5,8) parallel to #f(x)= 3x- 8#?
-
What does f(x)=3 mean?
-
If #f(x)=2x+3x+5#, how do you find 3f(-2)?
-
How do you write #6x=3y+12# in function notation?
-
How do you write an equation of a line in function notation given the line goes through (2,3); perpendicular to #6x-7y=6#?
-
If #f(x) = x^2-1# and #g(x)=1-x#, how do you find f(g(x))?
-
If #f(x)=4x^2-24x+36#, how do you find the value f(x)=4?
-
If #f(x)=3x^2 - 3x#, what is f(0), f(-1) and f(2)?
-
How do you evaluate the function #f(x) = 3x – 2#, when x = –1?
-
How do you evaluate the function #g(t) = 4/5t#, when t=50?
-
How do you evaluate the function #H(x) = 18 – x#, when x=-6?
-
How do you evaluate the function #k(n) = 2n^2#, for k(3)?
-
Is (6,1) (5,1) (4,1) (3,1) a function?
-
For #f(t)=abs[t]+1#; how do you find f(-5),f(0) and f(-9)?
-
For #f(x)=abs[x]-2#; how do you find f(3),f(93) and f(-100)?
-
For #g(t)=t^3 +3#; how do you find g(1),g(-5),and g(0)?
-
For #h(x)=x^4 -3#; how do you find f(4),f(-3),and f(6)?
-
For #f(m)=3m^2-5#, how do you find f(4),f(-3),f(6)?
-
For #g(s)=2s+4#; how do you find g(1),g(-7),and g(6)?
-
For #h(x)=19#; how do you find h(4),h(-6),and h(12)?
-
For #F(x)=2x^2 -3x+2#; how do you find F(0),F(-1),F(2)?
-
For #P(x)=3x^2-2x#; how do you find P(0),P(-2) and P(3)?
-
Is {(1, 2); (2, 3); (3, 4); (4, 5)} a function?
-
Is {(1, 2); (1, 3); (1, 4); (1, 5)} a function?
-
Is {(1, 2); (2, 3); (3, 4); (2, 5)} a function?
-
Is {(-2,4), (1,5),(5,-2)} a function?
-
Is #xy = 7 # a function?
-
Is #x = 7# a function?
-
Is #x^2 - y^2 = 7 # a function?
-
Is #x^2 + y^2 = 7# a function?
-
If g(x) = 4x - 2, then how do you find g(5)?
-
If f(7) = 18, then how do you complete f(x) = 2x + _____?
-
If f(x) = 3x - 12, then how do you find f(4)?
-
If #g (x) = 3^2 - x + 17#, then how do you find g (2)?
-
If #f(x) = -6x - 3#, then how do you find f(2)?
-
Is {(-6,2),(7,2),(6,-3)} a function?
-
Is {(-1,2),(7,1)(0,-3)} a function?
-
Is {(-6,2),(7,1),(0,-3)} a function?
-
Is # x=3# a function?
-
Is #y=3# a function?
-
Is #x=y^2# a function?
-
Is #x^2+y^2=9# a function?
-
Is (2,1), (1,-2), (-3,2), (2,-3) a function?
-
Is (2,-1), (-1,2), (-2,3), (3,-2) a function?
-
Is (-3,-2), (-1,0), (0,1), (1,2) a function?
-
Is (-2,1), (-1,2), (1,1), (2,3) a function?
-
How do you evaluate f(4) if #f(x) = 2x -1#?
-
How do you evaluate the function with the given values of x: f(x)=4x x=2, x=1/2?
-
How do you evaluate the function with the given values of x: f(x)=8x x=3, x=1/3?
-
How do you evaluate the function with the given values of x: g(x)=3-2x x=0, x=-2?
-
How do you evaluate the function with the given values of #x:color(white)("dd") h(x)=23x-1 ;color(white)("d")x=1/3;color(white)("d") x=-1#?
-
How do you evaluate the function with the given values of #x: color(white)("d")f(x)=(1/2)[x+1] ;color(white)("ddd") x=0; x=-1#?
-
How do you evaluate the function with the given values of x: f(x)=(1/3)[2x] x=-1, x=1/2?
-
How do you evaluate the function with the given values of x: g(x)=3x^2 x=0, x=2?
-
How do you evaluate the function with the given values of x: h(x)=4x^-2 x=2, x=3?
-
How do you evaluate the function with the given values of x: y=1.01x x=0,x=2?
-
If f(x)=4[x-1] and g(x)=x+1, how do you find f(g(-1))?
-
If #h(x)=3^(2x)# and #f(x)=x-2#, how do you find #h(f(-3))#?
-
If f(x)=1-3^[x] and g(x)=x-3, how do you find f(g(2))?
-
If f(x)= 4^[x] and h(x)=2x, how do you find f(h(1/2))?
-
If f(x)= -6^[-x] and g(x)=3x-1, how do you find f(g(0))?
-
How do you evaluate P(-1/2) if #P(x) = 2x^4 + x^3 + 12#?
-
Is t=30+5h a function?
-
How do you find f(-2) given f(x)= -x + 2?
-
If #f(x) = x^2- 2#, how do you find expressions for f(x-2)?
-
If #f(x) = x^2- 2#, how do you find expressions for f(-x)?
-
If #f(x) = x^2- 2#, how do you find expressions for f (-x)-2?
-
How do you find the function value #f(x)=x^3# for f(-3)?
-
The function c(p) = 175 + 3.5p can be used to define the cost of producing up to 200 ceramic pots. If the materials are $175 and the additional cost to produce each pot is $3.50, how much will it cost to produce 125 pots?
-
How do you calculate f(-1.60) if f is the function given by the formula #f(x) = -1.4x + -9.1#?
-
If f(x) = -5x, then what is f(-3)?
-
If g(x) = 2x - 1, then what is g(4)?
-
If #f(x)=4x^-5# and #g(x)=x^3/4#, then what is f(g(x))?
-
If #f(x)=4x^-5# and #g(x)=x^3/4#, then what is g(f(x))?
-
If #f(x)=4x^-5# and #g(x)=x^3/4#, then what is #f(g(x))#?
-
If #f(x)=4x^-5# and #g(x)=x^3/4#, then what is g(g(x))?
-
If # f(x)=x²-2x+3#, how do you find f(a)?
-
If # f(x)=x²-2x+3#, how do you find f(a + h)?
-
If # f(x)=x²-2x+3#, how do you find f(a+h)-f(a)/h?
-
If #g(x)= { 7 if x≤0 , 1/x if x >0#, how do you find g(1)?
-
If #g(x)= { 7 if x≤0 , 1/x if x >0#, how do you find g(0)?
-
If #g(x)= { 7 if x≤0 , 1/x if x >0#, how do you find g(4)?
-
Given the function k described by k (x) = x + 18, how do you find k(0)?
-
Given the function #k# described by #k(x)=x+18#, how do you find #k(-15)#?
-
Given the function k described by k (x) = x + 18, how do you find k(-11)?
-
Given the function k described by k (x) = x + 18, how do you find k(9)?
-
Given the function k described by k (x) = x + 18, how do you find k(c+6)?
-
Given the function f(x)=x^3-5x^2-12x+36 and given that f(6)=0, what are the roots of the function?
-
How do you evaluate -3r-13 for r=a?
-
If f(x) = 10 - 4x, how do you solve f(-1)?
-
If #f(x)=2x-6#, how do you solve f(0)?
-
If #f(x) = 3x - 4#, how do you solve f(x) = 5?
-
If #h(x) = -x^2 - 3x#, how do you solve h(-4)?
-
If #h(x) = -x^2 - 3x#, how do you solve h(4)?
-
If #g(x) = 5 - sqrt(x+30)#, how do you solve g(6)?
-
If #g(x) = 5 - sqrt(x+30)#, how do you solve g(-34)?
-
How do you evaluate #sqrt(x+7)# when x = 9?
-
How do you evaluate #sqrt(16-x)# when x = 8?
-
How do you evaluate #3 + sqrt(x+7) - sqrt(3x)# when x = 9?
-
How do you find f(-2) given #f(x)= -x + 2#?
-
If f(x) = 2x - 5 and g(x) = x^2 - 3, what is (g o f)(x)?
-
If #f(x) = 2x - 10# ; #g (x) = 4x + 20# what is the value of (f + g) (3) ?
-
Is (2,3),(-4,5),(2,7),(7,-2) a function?
-
Is #(2,3),(-4,5),(-2,7),(7,7)# a function?
-
Is (2,3),(-4,5),(2,-7),(7,-2) a function?
-
How do you evaluate the function #f(x) = 5x +2# for f(-2)?
-
How do you evaluate the function #f(x)=x^2 - x + 1# for f(2)?
-
How do you evaluate the function # f(x)=x^3# for f(2)?
-
How do you evaluate the function #h(x)=4x-2# for h(x+2)?
-
How do you evaluate the function #f(x)=3x-7 # for x=4?
-
How do you evaluate the function #f(x)=2x^2-2x+9# for f(3/2)?
-
How do you evaluate the function #f(x) =x^2- 7x + 10# and #g(x)=1-x^2 # for f(0)?
-
How do you evaluate the function #f(x) =x^2- 7x + 10# and #g(x)=1-x^2 # for f(5)?
-
How do you evaluate the function #f(x) =x^2- 7x + 10# and #g(x)=1-x^2 # for f(-2)?
-
How do you evaluate the function f(x) = x - 8 for x = 2?
-
How do you evaluate the function f(x) = 3x - 7 at f (5)?
-
How do you evaluate the function f(x) = 1/3x + 5 at x = 6?
-
How do you evaluate the function #f (x) = 3x^2 + 3x -2# for #2f (a)#?
-
How do you evaluate the function #f (x) = 3x^2 + 3x -2# for #f (a) + f (2)#?
-
How do you evaluate the function #f (x) = 3x^2 + 3x -2# for # f (2/a)#?
-
How do you evaluate the function #f (x) = 3x^2 + 3x -2# for #f (a)/2#?
-
How do you evaluate the function #f (x) = 3x^2 + 3x -2# for #f (a + h)#?
-
How do you evaluate the function # f(x)= -x^2 + 5# for #f (4)#?
-
How do you evaluate the function #h(x)=3x-7# for #h(1)?
-
How do you evaluate the function #h(x)=3x-7# for #h(-2)?
-
How do you evaluate the function #G(x)=2x+9# for #G(0)#?
-
How do you evaluate the function #G(x)=2x+9# for #G(-4)#?
-
How do you evaluate the function #f(x)=3/5x+4# for #f(5))#?
-
How do you evaluate the function #f(x)=3/5x+4# for #f(-10)#?
-
How do you evaluate the function #g(x)=3-2/3x# for #g(3)#?
-
How do you evaluate the function #g(x)=3-2/3x# for #g(-3)#?
-
How do you evaluate the function #p(x)=x^2-2# for #p(6)#?
-
How do you evaluate the function #p(x)=x^2-2# for #p(-2)#?
-
How do you evaluate the function #f(x)=4x-3# and #g(x)=x^2+5x+3 # for #f(2)-g(4)#?
-
How do you evaluate the function #f(x)=6x^2+2x-12# for #f(x+1)#?
-
How do you evaluate the function #f(x)=6x^2+2x-12# for #f(-x)#?
-
How do you evaluate the function #f(x)=3x-7# for #f(-1)#?
-
How do you evaluate the function #f(x)=3x-7# for #f(0)#?
-
How do you evaluate the function #f(x)=3x-7# for #f(6)#?
-
How do you evaluate the function #p(x)=1/2x^3 + 2/3x^2 - 1/4x + 1/3# for #p(-2)#?
-
How do you evaluate the function #h(x)= .2x^2 - .6x - .25# for #h(-1/2)#?
-
How do you evaluate the function #f(x) = 5/2x + 8# for #f(4)#?
-
How do you evaluate the function #f(x) = 7x - 1/4# for #f(3/4)#?
-
How do you evaluate the function #f(x) = 4x-5 # for #f(3)#?
-
How do you evaluate the function #f(x) = -1/3x+7# for #f(-6)#?
-
How do you evaluate the function #f(x) = |x|+6# for #f(-2)#?
-
How do you evaluate the function #f(x) = |2x-7|-3# for #f(1)#?
-
How do you evaluate the function #f(x) = -x^2 + 3x-1# for #f(-1)#?
-
How do you evaluate the function #f(x) = -|x+4|+x^2# for #f(-9)#?
-
How do you evaluate the function #f(x) = 3/4x^2 - 11# for #f(2)#?
-
How do you evaluate the function #f(x) = sqrt(x+1)# for #f(25)#?
-
How do you evaluate the function #f(x) = 3x+7# for #f(-5)#?
-
How do you evaluate the function #f(x) = -2/5x+17# for #f(10)#?
-
Question #ea4c3
-
How do you find the inverse of #y=x-12#?
-
How do you find the inverse of #y-3x=0#?
-
How do you find the inverse of #2x-3y= -15#?
-
Given f(x) = –5x – 1, how do you find f(a – 4)?
-
Given #f(x) = 3x + 2# how do you find f(5)?
-
Given #f(x) =8x - 9# how do you find f(-2)?
-
Given #g(x) = 3x^2 + 4# how do you find g(-2)?
-
Given #g(x) = -2x^2 - 9# how do you find g(3)?
-
Given #h(x) = 5x^2 - 4x# how do you find h(-3)?
-
Given #g(x) = 7x - 2# and #h(x) = 4x^2 + 7# how do you find (g + h)(-3)?
-
Given #f(x) = 5x^2 - 4x# and #g(x) = -3x^2 - 8# how do you find (f + g)(2)?
-
Given #f(x) = 4x + 5# and #g(x) = 7x - 2# how do you find (f - g)(7)?
-
Given #f(x) = 4x + 5# and #h(x) = sqrt(5x - 4)# how do you find (hf)(4)?
-
Given #f(x) = 2x^3 + x^2# and #g(x) = 7x - 2# how do you find (gf)(3)?
-
Given #f(x) = -3x^2 - 8# and #h(x) = 6x + 2# how do you find f(h(x))?
-
Given #g(x) = 5x^2 - 4x# and #h(x) = 3x + 9# how do you find g(h(x))?
-
Given #f(x) = 4x + 5# and #g(x) = 3x - 8# how do you find g(f(x))?
-
Given #f(x) = 2x - 5# and #g(x) = 2x^2 + 7# how do you find f(g(x))?
-
Given #g(x) = sqrt(5x - 4)# and #h(x) = 4x^2 + 7# how do you find h(g(1))?
-
Given #g(x) = 5x^2 - 4x# and #h(x) =sqrt(x - 7)# how do you find g(h(x))?
-
If #f(x)=5x#, #g(x)=1/x#, and #h(x)=x^3#, how do you find #(5h(1)-2g(3))/(3f(2))#?
-
Given #f(x)=3x^4-2x^2# & #g(x)= 2/sqrtx, (x ≠0)# how do you find the composition of f and g?
-
How do you find x when y= -2, -1, 0 and 1 given #2x+y=5#?
-
How do you find x when y= -2, -1, 0 and 1 given #4(5-y)=14x+3#?
-
Given #f(x)=x-4#, how do you find f(8)?
-
Given #f(x)=x-4#, how do you find f(1)?
-
Given #f(x)=x(-6)#, how do you find f(9)?
-
Given #f(x)=x(-6)#, how do you find f(2)?
-
Given #f(x)=1/(x-2)#, how do you find f(f(x))?
-
Given #f(x)=1/(x-2)#, how do you find (f(f(1/2))?
-
Given #f(x)=1/(x-2)#, how do you find f(f^-1(x))?
-
How do you know this is a function: (-2,10) (4,1) (9,-4) (3,2) (0,-9)?
-
If f(x) = x^2- 2, how do you find #f(-x) #?
-
If #f(x) = x^2 - x# and #g(x) = 3x + 1# how do you find f(g(x))?
-
If #f(x) = x^2 - x# and #g(x) = 3x + 1# how do you find #g(f(sqrt2))#?
-
If exactly two different linear functions, f and g, satisfy f(f(x)) = g(g(x)) = 4x + 3, what is the product of f(1) and g(1)?
-
Given the function h(x)=2x+7, how do you find #(h(9)-h(3))/(9-3)#?
-
How do you find the domain and range of #x+3 =0#?
-
If #f(x+3)=[x+1]/[2x-1]# then how do you find f(x-1)?
-
Is #2x-3y=4# a function?
-
Is #xy=1# a function?
-
Is #x^2=y+1# a function?
-
How do you evaluate the function #y=x-9# for these values of x: -2, -1, 0 and 1?
-
Given #f(x)= x^2/(x+2)# how do you find #f(-x)#?
-
Given #f(x)= x^2/(x+2)# how do you find #-f(x)#?
-
Given #f(x)= x^2/(x+2)# how do you find #f(x+2)#?
-
Given #f(x)= x^2/(x+2)# how do you find #f(x-2)#?
-
Given #f(x)=1/(x-1)#, and #g(x)=2/x#, how do you find f(g(x))?
-
If #f(x)=x-5# and #g(x)=x^2+3#, how do you find f[g(-2)]?
-
If #f(x)= 2x+5# and #g(x)=x^2-3#, how do you find [f o g] (x)?
-
How do you find the inverse of #f(x)= 5x + 10#?
-
What is the inverse of #g(x)=(x+8)/3#?
-
What is the inverse of #h(x) = 5x + 2#?
-
What is the inverse of #y = 3x + 9#?
-
If #f(x) = 2x-1# and #g(x) = 4x#, what is f[g(3)] ?
-
If #f(x)=x^2+1#, how do you find f(x+2)?
-
Given #f(x) = x +2# and #g(x)= 2x^2-4x+2#, how do you find #f(x)+g(x)#?
-
Given #f(x) = x +2# and #g(x)= 2x^2-4x+2#, how do you find #f(x)-g(x)#?
-
Given #f(x) = x +2# and #g(x)= 2x^2-4x+2#, how do you find #g(x)-f(x)#?
-
Given #f(x) = x +2# and #g(x)= 2x^2-4x+2#, how do you find #f(x)*g(x)#?
-
Given #f(x) = x +2# and #g(x)= 2x^2-4x+2#, how do you find #f(x) ÷ g(x)#?
-
Given #f(x) = x +2# and #g(x)= 2x^2-4x+2#, how do you find #g(x)÷f(x)#?
-
What is #3[f(x + 2)]# if #f(x) = x^3 + 2x^2 - 4#?
-
Question #5d4cd
-
Question #8318d
-
Question #37332
-
Question #5d632
-
Let #f(x) = 3x - 4# and #g(x) = x^2 - 2#, what is the value of #f(g(2))# and #f(g(x))#?
-
How do you solve #5=6^(3t-1)# ?
-
Question #91a29
-
What is #log_4(2sqrt(2))# ?
-
Question #13b41
-
Question #91a8b
-
Question #d4055
-
What is #3 sqrt(x^2/y)# in exponential form?
-
Question #bb651
-
How do we solve 6^3t-1=5 for #t#?
-
Question #3877e
-
Question #92c0c
-
Question #15527
-
Question #3a38f
-
If h(x) is given, find f(x) and g(x)?
suppose h(x)=f(g(x))
h(x)=lx^2 -4l +3
f(x)=
g(x)=
-
Write the quadratic function f(x) = x2 + 8x + 3 in vertex form?
A) f(x) = (x - 4)2 - 13
B) f(x) = (x - 4)2 + 3
C) f(x) = (x + 4)2 + 3
D) f(x) = (x + 4)2 - 13
-
If #f(x) = (3x+7)^2#, what is #f(1)#?
-
Given #f(x)=4-x^2# and #g(x)=|2x-7|#, how do you find f(g(2)) and g(f(2))?
-
If #x=-3# what is the value of #(x^2-1)/(x+1)#?
-
What is the function rule for these ordered pairs (-2, 10) (-1, -7) (0, -4) (1, -1) (2, 2)?
-
Question #7f1e9
-
Solve the following equation: #(x^2-2)/3+((x^2-1)/5)^2=7/9(x^2-2)#?
-
If #f(x)=2x^2 + x# and #g(x)=x-2# what is [f•g](x)?
-
Question #6fadf
-
Question #5785b
-
If you are given a set of points on a graph (0,0), (1,4), (2,1), (3,3), (4,5), how do you determine the domain of the function?
-
What is the value of g[f(4)] for the functions f(x) = 2x + 1 and g(x) = 2x - 5?
-
What is the value of f(5) for the function f(x) = 3x - 4?
-
If #f(x) = 3x^2 - x#, how do you find f(-2)?
-
Given f(x)=4x-3, g(x)=1/x and h(x)= x^2-x, how do you find f [h(4)]?
-
Given f(x)=4x-3, g(x)=1/x and h(x)= x^2-x, how do you find h(kx)?
-
Given f(x)=4x-3, g(x)=1/x and h(x)= x^2-x, how do you find h(1/x)?
-
Ok so how do you solve the following equation?
-
Question #d6521
-
Given 3-x where #x <= 2# and #x^2# where #x >2#, how do you find f(6)?
-
Given 3-x where #x <= 2# and #x^2# where #x >2#, how do you find f(2)?
-
Given #x^5# if #x<0 and 2x + 1" if "x >= 0#, how do you find #f(-1)#?
-
Given #f(x)=x^5" if "x<0 and f(x)=2x + 1" if "x >= 0#, how do you find #f(1)#?
-
Given #x^5# if x<0 and 2x + 1 if x >= 0, how do you find f(0)?
-
How do you find f(-3) given 3-5x if x ≤0, 4x if 0<x<8, 5x+3 if x ≥ 8?
-
If #2x + 14# for #-7<=x<-5, 4# for #-5<=x<1# and #3/2x + 5/2# for #x>=1#, how do you find #f(-6)#?
-
If 2x + 14 for -7<=x<-5, 4 for -5<=x<1 and 3/2x + 5/2 for x>=1, how do you find f(0)?
-
If 2x + 14 for -7<=x<-5, 4 for -5<=x<1 and 3/2x + 5/2 for x>=1, how do you find f(3)?
-
If f(x)= 1 for [-7,-3), 3 for [-3,1), and 5 for [1,5), how do you find f(-4)?
-
If f(x)= 1 for [-7,-3), 3 for [-3,1), and 5 for [1,5), how do you find f(1)?
-
If f(x)= 1 for [-7,-3), 3 for [-3,1), and 5 for [1,5), how do you find f(3)?
-
If f(x)=3x if x<0, x+1 if 0≤ x≤ 2, and (x-2)^2 if x>2, how do you find f(-5)?
-
If f(x)=3x if x<0, x+1 if 0≤ x≤ 2, and (x-2)^2 if x>2, how do you find f(0)?
-
If f(x)=3x if x<0, x+1 if 0≤ x≤ 2, and (x-2)^2 if x>2, how do you find f(1)?
-
If f(x)=3x if x<0, x+1 if 0≤ x≤ 2, and (x-2)^2 if x>2, how do you find f(2)?
-
Given #f(x) = 2 - 3x# how do you evaluate f(a)?
-
How do you evaluate f(-2) given #f(x)=x^2-4#?
-
If #f(x) = 3x + 1#, then what is f(3)?
-
If #f(x) = 3x + 1#, then what is f(2)?
-
Consider the function #f(x)=1/(x-2)#, then how do you simplify f(f(x))?
-
Consider the function #f(x)=1/(x-2)#, then how do you simplify (f(f(1/2))?
-
Consider the function #f(x)=1/(x-2)#, then how do you simplify #f(f^-1(x))#?
-
How do you know if (5,-7) (6,-7) (-8-1) (0,-1) is a function?
-
How do you know if (4,5) (3, -2) (-2,5) (4,7) is a function?
-
How do you know if x=15 is a function?
-
How do you know if y=3x-2 is a function?
-
How do you know if y=3x+2 is a function?
-
If #f(4x)=12x-7#, how do you find f(16.5)?
-
For the function #f(x) = x^2 - 2x + 1#, how do you find f(0)?
-
For the function #f(x) = x^2 - 2x + 1#, how do you solve f(x) = 0?
-
Given f(x)=x+1, how do you find f(k)?
-
Let #f(x) = 7x^2+5# and g(x) = x-3, how do you find the composite function (f o g)(x)?
-
Is #F(x) = 3x^4 - 5# an odd or even function?
-
Given that #f(x) = sqrtx - 3# and g(x) = 2x + 1, how do you find #(f/g)(-sqrt3)#?
-
Let f(x)=-2x+4 and g(x)=-6x-7, how do you find f(x)-g(x)?
-
Let f(x)=3x-7 and g(x)= -2x - 6, how do you find (f o g)(4)?
-
Let f(x) = 9x - 2 and g(x) = -x + 3, how do you find f(g(x))?
-
Let #f(x) = x^2 - 3x - 7# how do you find f(-3)?
-
Let #f(x) = 12/(4 x + 2# how do you find f(-1)?
-
Let f(x) = 5x + 12 how do you find #f^-1(x)#?
-
Let #f(x) = x^2 - 16# how do you find #f^-1(x)#?
-
Let f(x) = x - 2 and #g(x) = x^2 - 7x - 9# how do you find f(g(-1))?
-
Let f(x) = x + 8 and #g(x) = x^2 - 6x - 7# how do you find f(g(2))?
-
Let f(x) = 2x + 2, how do you solve #f^-1(x)# when x = 4?
-
Let f(x) = 2x - 6, how do you solve #f^-1(x)# when x = 2?
-
Let #F(x)=x^2-20# and #G(x)=14-x#, how do you find# (F/G)(7)#?
-
For #F(x) = -4x# how do you find (6)?
-
For #F(x) = -4x# how do you find f(0)?
-
For #F(x) = -4x# how do you find f(-1)?
-
For #F(x) = -4x# how do you find f(3a)?
-
For #F(x) = -4x# how do you find f(a-1)?
-
Given #f(x) = x^2 - 4# and g(x) = 2x - 1 , how do you determine the value of (f + g)(3)?
-
Given #f(x) = x^2 - 4# and g(x) = 2x - 1 , how do you determine the value of (f/g)(-1)?
-
How do you find (f*g)(x) and (g*f)(x) and determine if the given functions are inverses of each other #f(x) = x^2 − 3# and #g(x) = sqrtx+3#?
-
Let f (x)= –5x – 4 and g(x) = 6x – 7, how do you find f (x) + g(x)?
-
Let f (x) = 3x + 2 and g(x) = 6x – 7, how do you find f (x) – g(x)?
-
Let f (x) = –5x + 3 and g(x) = 6x – 2, how do you find f • g and its domain?
-
Let #f (x) = x^2 – 16# and g(x) = x + 4, how do you find f/g and its domain?
-
If f(x)=3x² and g(x)=4-5x, how do you calculate f(g(10))?
-
How do you find f(g(x)) if #g(x) = 3/(x - 1)# and #f(x) = (x - 1)/(x - 3)#?
-
Suppose f(x) = -3x + 2, how do you find the value for f(1/3)?
-
How do you find the inverse function of the function f(x) = -3x + 2?
-
How do you find the inverse function of the function f(x) = 3/x?
-
Given h(x) = 3|x| -1, what is the value of h(-7)?
-
Given #f (x) = 2x + 5#; #g (x) = 3x^2#, what is equal to (f o g) (x)?
-
Given f (x) = 4x - 7; g(x) = x +3, what is the value of (g o f) (4)?
-
Is the relation a function: {(-8,-6),(-3,-9),(5,-6),(-4,-6)}?
-
Is the relation a function: {(51,126),(51,126),(105,-145),(160,140),(105,125),(133,-114)}?
-
If #f(x) = x^2 + 10#; g(x) = x – 3, what is (f + g)(x)?
-
If #f(x) = x + 6#; #g(x) = x^2 – 2#, then what is #f(g(x))#?
-
If #f (x) = 2 + x# ; #g(x) = x^2 + 5#, then what is (f - g)(-5)?
-
If #f(x) = (x - 2)^2#; #g (x) = x +3 #, then what is (f + 2g)(4)?
-
Given #f(x) = 2x^2+3# and g(x) = 5x+2, how do you find #(3f(2) - 2g(2) ) / (f(1) + g(1) )#?
-
How do you evaluate the function when x = -3, 0, and 2 for f(x) = 15x + 4?
-
How do you evaluate the function when x = -3, 0, and 2 for g(x) = -9x + 1?
-
How do you evaluate the function when x = -3, 0, and 2 for p(x) = -7x - 5?
-
How do you evaluate the function when x = -3, 0, and 2 for h(x) = 3.25x?
-
How do you evaluate the function when x = -3, 0, and 2 for m(x) = -4.4x?
-
How do you find the value of x so that the function f(x) = 4x - 2 has the given value 18?
-
How do you find the value of x so that the function n(x) = 7x +4 has the given value 39?
-
How do you find the value of x so that the function q(x) = 6 - 5x has the given value 21?
-
How do you compare the graph of h(x) = x -4 to the graph of f(x) = x?
-
How do you compare the graph of g(x) = x + 7 to the graph of f(x) = x?
-
How do you compare the graph of m(x) = 5x to the graph of f(x) = x?
-
Is (1,0), (4,2), (7,4), (10,6) a function?
-
Is (5, -2), (5, -1), (5, 0), (5, 1) a function?
-
Given #f(x) = x^2 - x# and g(x) = 3x + 1, how do you determine f( g (x) )?
-
Given F(x) = 3x+1, G(x) = 2x, #H(x) = x^2#, how do you find the rule for (F o (G o H) )(x)?
-
Given #F(x) = 3x+1, G(x) = 2x, H(x) = x^2#, how do you find the rule for #((F @ G) @ H) (x)#?
-
Knowing the formula to the sum of the N integers a) what is the sum of the first N consecutive square integers, #Sigma_(k=1)^N k^2 = 1^2+2^2+ cdots + (N-1)^2+N^2#? b) Sum of the first N consecutive cube integers #Sigma_(k=1)^N k^3#?
-
Compute the following two sums:
(a) #S_a =Sigma_(k=1)^20(2 − 3k + 2k^2),#
(b)#S_b =Sigma_(k=10)^50k#?
-
How do you write the inverse of the function #y=x-12#?
-
How do you find f(-5) given #f(x) = 1/2abs [t + 3]#?
-
Question #bc9c0
-
Given h(x) = 2|x| + 5, what is the value of h(4)?
-
How do you determine (algebraically) whether the function #f(x)=1/(2x^4)# is even, odd, or neither?
-
What is f(2) given #f(x)=6/(1+5e^(-3x))#?
-
How do you determine if the function is a one-to-one function and find the formula of the inverse given #f(x) = 5x^3 - 7#?
-
If f(x) has a property that f(2-x) = f(2+x) for all x and f(x) has exactly 4 real zeros, how do you find their sum?
-
How do you find the function values f(6) given F(x) = -4x?
-
How do you find the function values f(-1/2) given f(x) = -4x?
-
How do you find the function values f(0) given F(x) = -4x?
-
How do you find the function values f(-1) given F(x) = -4x?
-
How do you find the function values f(3a) given F(x) = -4x?
-
How do you find the function values f(a-1) given F(x) = -4x?
-
How do you find the function rule given Input= 20; 1; 40; 4; 8; 10 and Output= 2; 40; 1; 10; 5; 4?
-
How do you find the function rule given Input= 13; 51; 22; 33; 36 and Output= 28; 42; 56; 70; 84; 98?
-
How do you find the function rule given Input= 6; 17; 26; 42; 61 and Output= 30; 41; 50; 66; 85?
-
If #f(x) = 2x^2 + 5# and #g(x) = 3x + a#, how do you find a so that the graph of (f o g)(x) crosses the y-axis at 23?
-
Consider #y = f(x) = (x-2) / (x+2)#, does this formula define a function for #-3<x< 3#?
-
How do you find #f(x+Yx)# for #f(x)=x^3 + 1#?
-
How do you find its inverse and check your answer and state the domain and the range of #f(x) = 4 /( x+2)# and f^-1?
-
The function f is defined as #f(x) = x/(x-1)#, how do you find #f(f(x))#?
-
Given f(x)=x²+3x-5 and g(x)=2x-3, how do you determine x when f(x)=g(x)?
-
How do you rewrite the equation 2x+y=5 so that x is a function of y and then use the result to find x when y= -2, -1, 0 and 1?
-
How do you rewrite # x + 3y = -36# in function form?
-
For the function y=3x+2, how do you find the set of coordinates with x-values 1 and 3?
-
For the function y=3x+2, how do you find the y-intercept?
-
If #f(x)=1/(x+1)# how do you evaluate #(f(x+h)-f(x))/h#?
-
Given f(x) = 3x -1, how do you find f(x-1) - f(2)?
-
Given #f(x) = (2x-1)/(x-1) # how do you find f^-1(x)?
-
Let #f(x) = 6x^2 + 7x - 5# and g(x) = 2x - 1, how do you find f/g?
-
Given f(x) = 3x +1 and (f o g)(x) = 6 - 1/2x, how do you find the function g?
-
If f(x) = ax + b and f(2) = f(4), then what is a?
-
Question #d16d6
-
How do you find the inverse of #f(x) = 5x^3 - 7#?
-
Function f is symmetric to the origin and periodic with period 8. If f(2)=3, what is the value of f(4)+f(6)?
-
How do you find the inverse of #f(x) = 4 / (x+2)#?
-
If #f(x)=(ax)/(a+3x), how do you find and simplify f(a)?
-
How do you find the inverse of #f(x) = (3x + 4) / 5#?
-
How do you find the inverse of #g(x) = (x -5)^2#?
-
If f(x)=3x-5, then how do you find f(2)?
-
How do you find the inverse of #y = (-1/2)x + 7#?
-
What is the inverse of #f(x) = x-8#?
-
If #f(x) = 2x^2- x# , what is f(-3)?
-
Question #b073a
-
How do you find f(g(5)) given #f(x)=4x+3# and #g(x)=x-2#?
-
How do you find f(g(-6)) given #f(x)=4x+3# and #g(x)=x-2#?
-
How do you find f(f(7)) given #f(x)=4x+3# and #g(x)=x-2#?
-
How do you find g(f(x)) given #f(x)=4x+3# and #g(x)=x-2#?
-
How do you find #(fog)(x)# given #f(x)=6x^2# and #g(x)=14x+4#?
-
How do you find #(gof)(x)# given #f(x)=6x^2# and #g(x)=14x+4#?
-
How do you find #f(g(-3))# given #f(x)=2x-1# and #g(x)=3x# and #h(x)=x^2+1#?
-
How do you find #f(h(7))# given #f(x)=2x-1# and #g(x)=3x# and #h(x)=x^2+1#?
-
How do you find #g(h(24))# given #f(x)=2x-1# and #g(x)=3x# and #h(x)=x^2+1#?
-
How do you find #f(g(h(2)))# given #f(x)=2x-1# and #g(x)=3x# and #h(x)=x^2+1#?
-
How do you find #h(g(f(5)))# given #f(x)=2x-1# and #g(x)=3x# and #h(x)=x^2+1#?
-
How do you find #g(f(h(-6)))# given #f(x)=2x-1# and #g(x)=3x# and #h(x)=x^2+1#?
-
How do you find #f(x+1)# given #f(x)=2x-1# and #g(x)=3x# and #h(x)=x^2+1#?
-
How do you find #g(3a)# given #f(x)=2x-1# and #g(x)=3x# and #h(x)=x^2+1#?
-
How do you find #h(x-2)# given #f(x)=2x-1# and #g(x)=3x# and #h(x)=x^2+1#?
-
How do you find #f(g(x))# given #f(x)=-3x+7# and #g(x)=x^2-8#?
-
How do you find #(gof)(x)# given #f(x)=-3x+7# and #g(x)=x^2-8#?
-
How do you find #(f@g)(3)# given #f(x)=3x-5# and #g(x)=x^2#?
-
How do you find #(fog)(10)# given #f(x)=-9x-9# and #g(x)=sqrt(x-9)#?
-
How do you find #(fog)(12)# given #f(x)=-4x+2# and #g(x)=sqrt(x-8)#?
-
How do you find #(gof)(-2)# given #f(x)=-3x+4# and #g(x)=x^2#?
-
How do you find #(g" o" f)(2)# given #f(x)=-2x+1# and #g(x)=sqrt(x^2-5)#?
-
How do you find #(fog)(x)# given #f(x)=-9x+3# and #g(x)=x^4#?
-
How do you find #(fog)(x)# given #f(x)=2x-5# and #g(x)=x+2#?
-
How do you find #(fog)(x)# given #f(x)=x^2+7# and #g(x)=x-3#?
-
How do you find #(gof)(x)# given #f(x)=4x+3# and #g(x)=x^2#?
-
How do you find #(gof)(x)# given #f(x)=x-1# and #g(x)=x^2+2x-8#?
-
How do you find #(goh)(1)# given #g(x)=x^2+4+2x# and #h(x)=-3x+2#?
-
How do you find #(f-g)(4)# given #f(x)=4x-3# and #g(x)=x^3+2x#?
-
How do you find #(h+g)(10)# given #h(x)=3x+3# and #g(x)=-4x+1#?
-
How do you find #(g/f)(3)# given #g(a)=3a+2# and #f(a)=2a-4#?
-
How do you find #g(3)-h(3)# given #g(x)=2x-5# and #h(x)=4x+5#?
-
How do you find #(goh)(-4)# given #g(a)=2a-1# and #h(a)=3a-3#?
-
How do you find #(goh)(-1)# given #g(t)=t^2+3# and #h(t)=4t-3#?
-
How do you find #g(f(2))# given #g(n)=3n+2# and #f(n)=2n^2+5#?
-
How do you find #(g-f)(x)# given #g(x)=-x^2-1-2x# and #f(x)=x+5#?
-
How do you find #(g-f)(a)# given #g(a)=-3a-3# and #f(a)=a^2+5#?
-
How do you find #(h-g)(t)# given #h(t)=2t+1# and #g(t)=2t+2#?
-
How do you find #(h-g)(n)# given #h(n)=4n+5# and #g(n)=3n+4#?
-
How do you find #(g/h)(a)# given #g(a)=-3a^2-a# and #h(a)=-2a-4#?
-
How do you find #(fog)(n)# given #f(n)=2n# and #g(n)=-n-4#?
-
How do you find #(h/g)(a)# given #h(a)=3a# and #g(a)=-a^3-3#?
-
How do you find #(goh)(n)# given #g(n)=2n+3# and #h(n)=n-1#?
-
How do you find #(hog)(x)# given #h(x)=x^2-2# and #g(x)=4x+1#?
-
How do you find #(g+f)(t)# given #g(t)=2t+5# and #f(t)=-t^2+5#?
-
How do you find #(g@f)(-2+x)# given #g(x)=2x-2# and #f(x)=x^2+3x#?
-
How do you find #(goh)(-4+a)# given #g(a)=2a+2# and #h(a)=-2a-5#?
-
How do you find #(f-g)(x)# given #f(x)=x^2-1 and #g(x)=2x-3# and #h(x)=1-4x#?
-
How do you find #(f-g)(3)# given #f(x)=x^2-1 and #g(x)=2x-3# and #h(x)=1-4x#?
-
How do you find #(f+g)(x)# given #f(x)=x^2-1 and #g(x)=2x-3# and #h(x)=1-4x#?
-
How do you find #(f+g)(-2)# given #f(x)=x^2-1 and #g(x)=2x-3# and #h(x)=1-4x#?
-
How do you find #(f+h)(x)# given #f(x)=x^2-1 and #g(x)=2x-3# and #h(x)=1-4x#?
-
How do you find #(f+h)(0)# given #f(x)=x^2-1 and #g(x)=2x-3# and #h(x)=1-4x#?
-
How do you find #(g*h)(x)# given #f(x)=x^2-1 and #g(x)=2x-3# and #h(x)=1-4x#?
-
How do you find #(g*h)(4)# given #f(x)=x^2-1 and #g(x)=2x-3# and #h(x)=1-4x#?
-
How do you find #(f*g)(x)# given #f(x)=x^2-1 and #g(x)=2x-3# and #h(x)=1-4x#?
-
How do you find #(f*g)(-1)# given #f(x)=x^2-1# and #g(x)=2x-3# and #h(x)=1-4x#?
-
How do you find #(f/g)(x)# given #f(x)=x^2-1 and #g(x)=2x-3# and #h(x)=1-4x#?
-
How do you find #(f/g)(2)# given #f(x)=x^2-1 and #g(x)=2x-3# and #h(x)=1-4x#?
-
How do you find #(g/h)(x)# given #f(x)=x^2-1 and #g(x)=2x-3# and #h(x)=1-4x#?
-
How do you find #(g/h)(0)# given #f(x)=x^2-1 and #g(x)=2x-3# and #h(x)=1-4x#?
-
How do you find #w(2)# given #w(x)=4x-1#?
-
How do you find #w(-1)# given #w(x)=x^3-2#?
-
How do you find #h(-3)# given #h(a)=a^2-1+a#?
-
How do you find #p(2)# given #p(t)=-t^3+4t^2 #?
-
How do you find #f(-1)# given #f(n)=-3n^2-4n #?
-
How do you find #f(0)# given #f(n)=n^2-4#?
-
How do you find #k(-3t)# given #k(t)=-4t+2#?
-
How do you find #g(x+2)# given #g(x)=3x-5#?
-
How do you find #g(t/4)# given #g(t)=t+3#?
-
How do you find #h(-2a)# given #h(a)=a^2+4#?
-
How do you find #w(t^2)# given #w(t)=t^2-5 #?
-
How do you find #k(4-x)# given #k(x)=4x-4#?
-
How do you find #h(n/2)# given #h(n)=-2n^3-5n#?
-
How do you find #g(a^2)# given #g(a)=3a-3#?
-
How do you find #w(t-1)# given #w(t)=t^2-4#?
-
How do you find #h(n-3)# given #h(n)=-n-2#?
-
How do you find #h(-2n)# given #h(n)=n^2+n#?
-
How do you find #g(4+t)# given #g(t)=-4t+1#?
-
How do you find #w(x+1)# given #w(x)=x^3-2x#?
-
How do you find #g(-x)# given #g(x)=x^2-3#?
-
How do you find #h(x-4)# given #h(x)=x^2-x#?
-
How do you find #g(x+1)# given #g(x)=x^3-2x^2#?
-
How do you find #p(-4x)# given #p(x)=x^2-5x#?
-
How do you find #h(6)# given #h(t)=abs(t+2)+3#?
-
How do you find #g(1)# given #g(a)=3^(3a-2)#?
-
How do you find #w(-7)# given #w(t)=-2t+1#?
-
How do you find #g(-6)# given #g(x)=3x-3#?
-
How do you find #h(4)# given #h(n)=-2n^2+4#?
-
How do you find #h(-2)# given #h(t)=-2*5^(-t-1)#?
-
How do you find #f(-8)# given #f(x)=x^2-3x#?
-
How do you find #p(-1)# given #p(a)=-4^(3a)#?
-
How do you find #p(t-2)# given #p(t)=4t-5#?
-
How do you find #g(2a)# given #g(a)=4a#?
-
How do you find #w(3n)# given #w(n)=4n+2#?
-
How do you find #w(a+4)# given #w(a)=a+3#?
-
How do you find #h(x+2)# given #h(x)=4x-2#?
-
How do you find #k(a-2)# given #k(a)=-4^(3a+2)#?
-
How do you find #g(-4n)# given #g(n)=n^3-5n^2#?
-
How do you find #f(n^2)# given #f(n)=n^2-2n#?
-
How do you find #p(x-4)# given #p(a)=a^3-5#?
-
How do you find #h(4+t)# given #h(t)=2*3^(t+3)#?
-
How do you find #k(-10)# given #k(x)=-x+1#?
-
How do you find #p(-6)# given #p(x)=3x#?
-
How do you find #g(8)# given #g(n)=n^2+3#?
-
How do you find #g(5)# given #g(x)=x^3+5x#?
-
How do you find #h(-5)# given #h(n)=n^3+3n^2#?
-
How do you find #w(7)# given #w(a)=-a^2+5a#?
-
How do you find #p(-6)# given #p(a)=a^3-4a#?
-
How do you find #h(-1)# given #h(n)=4/3n+8/5#?
-
How do you find #f(3/4)# given #f(x)=-1+1/4x#?
-
How do you find #h(4)# given #h(n)=n^3+6n#?
-
How do you find #h(-1)# given #h(x)=-x^2-3#?
-
How do you find #h(10)# given #h(x)=-x^2-x#?
-
How do you find #h(-7.8)# given #h(t)=t^2-4.4#?
-
How do you find #g(8.6)# given #g(t)=-2.3t^2+3.5t#?
-
How do you find #f(4)# given #f(x)=x-11#?
-
How do you find #f(-4)# given #f(x)=2#?
-
How do you find #f(-6)# given #f(x)=absx-5#?
-
How do you find #f(2)# given #f(x)=9x^3-x^2+2#?
-
How do you find #f(6)# given #f(x)=-2/3x^2-x+5#?
-
How do you find #f(-1/2)# given #f(x)=-3+4x#?
-
How do you find #g(-1)# given #g(x)=-5x+2#?
-
How do you find #g(-2)# given #g(x)=-5x+2#?
-
How do you find #g(0)# given #g(x)=-5x+2#?
-
How do you find #g(5)# given #g(x)=-5x+2#?
-
How do you find #f(-3)# given #f(x)=2x+2#?
-
How do you find #f(6)# given #f(x)=2x+2#?
-
How do you find #f(-1)# given #f(x)=2x+2#?
-
How do you evaluate #k(-2)# given #k(x)=-3x^2-3#?
-
How do you evaluate #g(-3)# given #g(x)=x-2#?
-
How do you evaluate #k(0)# given #k(a)=a+4#?
-
How do you evaluate #f(-6)# given #f(t)=t^2+2#?
-
How do you evaluate #h(2)# given #h(t)=t^3+5t^2#?
-
How do you evaluate #k(-6)# given #k(n)=n+2#?
-
How do you evaluate #g(-5)# given #g(x)=3x#?
-
How do you evaluate #f(7)# given #f(a)=3a#?
-
How do you evaluate #w(-4)# given #w(t)=t-5#?
-
How do you evaluate #h(-2)# given #h(x)=3x^2+2-2x#?
-
How do you evaluate #h(7)# given #h(t)=t+1#?
-
How do you evaluate #w(10)# given #w(x)=x^2-4#?
-
How do you evaluate #p(-6)# given #p(x)=-x-2#?
-
How do you evaluate #h(-10)# given #h(n)=n+4#?
-
How do you evaluate #g(10)# given #g(x)=-3x+1#?
-
How would you graph #f(x)# if #f(x)={ (x^2-1, x < -2), (4, -2 <= x <= 1), (3x+1, 1 < x <= 3), (x^2-1, x > 1) :}#? How would you evaluate the function at the indicated points: #f(-3)#, #f(-2)#, #f(5)#, #f(3)#?
-
How do determine whether these relations are even, odd, or neither: #f(x)=2x^2+7#? #f(x)=4x^3-2x#? #f(x)=4x^2-4x+4#? #f(x)=x-(1/x)#? #f(x)=|x|-x^2+1#? #f(x)=sin(x)+1#?
-
Question #333f1
-
Question #ae90e
-
Question #af025
-
Question #d801a
-
Question #bcc3d
-
Question #23f3c
-
Question #ab197
-
Question #de8d3
-
If #f(x)=-2x-3# and #g(x)=x^2+5x#, what is #f(6)#?
-
What is the value of #y# in the equation #y=3x-2" if x = -1#?
-
How do you evaluate #f(x)=1/2x-13# for #f(8)#?
-
How do you evaluate #f(x)=x^2-3x+1# for #f(5)#?
-
How do you evaluate #f(x)=-x^3+8x^2+3# for #f(-7)#?
-
How do you evaluate #f(x)=10-2x# for #f(1)#?
-
How do you evaluate #f(x)=abs(x+17)# for #f(-5)#?
-
How do you evaluate #f(x)=12x^2-19# for #f(1/2)#?
-
How many surjective homomorphisms are there from #ZZ_10# onto #ZZ_5# ?
-
Question #e07a4
-
Question #658c3
-
Given #a in RR^+, a ne 1# and #n in NN, n > 1# Prove that #n^2 < (a^n + a^(-n)-2)/(a+a^(-1)-2)#?
-
Question #f332a
-
How many surjective homomorphisms are there from #ZZ# onto #ZZ_3# ?
-
If #f(x)=7x^2-4x#, what is the value of #f(2)#?
-
What is the slope and #y#-intercept in case of following cases representing lines?
-
What are the roots of #(x+1)(2x+3)(2x+5)(x+3) = 945# ?
-
Question #d8fb4
-
How do we solve #logsqrt(x - 8) + 1/2log(2x+ 1) = 1#?
-
What is #f(3)# if #f(x)=-x^2+7#?
-
What is #3d + ( 5- d )# if #d = 4#?
-
Question #4e641
-
How do you evaluate the function #f(x)=x# when x=3?
-
How do you evaluate the function #f(x)=6x# when x=3?
-
How do you evaluate the function #f(x)=x^2# when x=3?
-
How do you evaluate the function #g(x)=2x+7# when x=3?
-
How do you evaluate the function #h(x)=-x^2+10# when x=3?
-
How do you evaluate the function #j(x)=x^3-7x# when x=3?
-
How do you evaluate the function #f(x)=x-11# for f(4)?
-
How do you evaluate the function #f(x)=2# for f(-4)?
-
How do you evaluate the function #f(x)=absx-5# for f(-6)?
-
How do you evaluate the function #f(x)=9x^3-x^2+2# for f(2)?
-
How do you evaluate the function #f(x)=-2/3x^2-x+5# for f(6)?
-
How do you evaluate the function #f(x)=-3+4x# for f(-1/2)?
-
How do you evaluate the function #f(x)=x+15# for f(8)?
-
How do you evaluate the function #f(x)=x^2+1# for f(-3)?
-
How do you evaluate the function #f(x)=absx+10# for f(-4)?
-
How do you evaluate the function #f(x)=6# for f(2)?
-
How do you evaluate the function #f(x)=x^3-2x^2+5x-8# for f(-5)?
-
How do you evaluate the function #h(x)=7-2/3x# for h(15)?
-
Question #701fb
-
If #f(x)=7|x-2|#, find #f(0)#, #f(-2)#, #f(x+1)# and #f(x^2+2)#?
-
If #f# is a group homomorphism from #S_3# into #ZZ_6#, then what is the order of #f(S_3)# ?
-
How do you find the value of k so that (-2, 1) satisfies #kx+ 6y=k#?
-
Question #806c4
-
Question #6be76
-
How do you find and simplify #f(x+h)-f(x)# and #(f(x+h)-f(x))/h# given #f(x)=7x^2-1#?
-
How do you find f(x) and g(x) such that #h(x)=(fog)(x)# and #h(x)=(8-4x)^2#?
-
Question #686f7
-
How do you find the inverse of #f(x)= 2x +3#?
-
Question #bd799
-
Given #h(x)=(3x)/(2x-17)#, how do you find h(7)?
-
How do you find f(-3) given #f(x)=3x-5#?
-
How do you find f(2/3) given #f(x)=3x-5#?
-
How do you find f(a) given #f(x)=3x-5#?
-
How do you find g(3) given #g(x)=x^2-x#?
-
How do you find g(1/3) given #g(x)=x^2-x#?
-
How do you find g(5n) given #g(x)=x^2-x#?
-
How do you find the value of #f(x)=-3x+2# when x=2?
-
What is g(4) if #g(x)=x^2-5#?
-
If #f(x)=2x-5#, then what is f(0)?
-
If #g(x)=x^2#, then what is g(x+1)?
-
How do you find the value of f(-1), if #f(x)=3x-4#?
-
How do you find the value of f(3), if #f(x)=3x-4#?
-
How do you find the value of #f(1/2)#, if #f(x)=3x-4#?
-
How do you find the value of f(a), if #f(x)=3x-4#?
-
Question #33262
-
What is an ordered pair of the function #d(t)=35t#?
-
Is (1,0) is an ordered pair of the function f(x)= 1 + x?
-
Let #f(x)=2x^2+2#, how do you find f(0.3)?
-
Let #f(x)=2x^2+2#, how do you find f(6)?
-
Let #f(x)=2x^2+2#, how do you find f(.1)?
-
Given #f(n)=n-4# and #g(n)=2n#, how do you find #3f(n)+5g(n)#?
-
Question #37491
-
The function for the cost of materials to make a shirt is #f(x)=5/6x+5# where xis the number of shirts. The function for the selling price of those shirts is g(f (x)), where #g(x)=5x+6#. How do you find the selling price of 18 shirts?
-
Consider the sequence -7, 3, 1, 5, 9,...What is f(2)?
-
Consider the sequence -7, 3, 1, 5, 9,...What is f(5)?
-
Find all polynomials #P(x)# with real coefficients for which
#P(x)P(2x^2)=P(2x^3+x)#?
-
Find the polynomial #P(x)# with real coefficients such that #P(2)=12# and
#P(x^2)=x^2(x^2+1)P(x)# for each #x in RR#?
-
Question #277a0
-
What is the value of the function #f(x)=7x# when #x=0.75#?
-
If #g(x)=-x^2-2x-4# , what is #g(0)#?
-
How do you use the vertical line test to determine whether #{(2,5), (3,-5), (4,5), (5,-5)}# is a function?
-
How do you use the vertical line test to determine whether #{(5,0), (0,5), (5,1), (1,5)}# is a function?
-
How do you use the vertical line test to determine whether #{(3,-1), (-2,3), (-1,-5), (3,2)}# is a function?
-
How do you use the vertical line test to determine whether #{(-2,9), (3,9), (-0.5,9), (4,9)}# is a function?
-
How do you graph the function #f(x)=(x-3)^3+4# and its inverse?
-
Let #f(x)=3^x#, what is the value of f(4)?
-
Let #f(x)=3^x#, what is the value of f(-1)?
-
Let #f(x)=3^x#, what is the value of f(x+2)?
-
Prove that the fraction #(21n+4)/(14n+3)# is irreducible for every #n in NN#?
-
Question #60966
-
Given the function #f(x)=-3-x#, how do you express the value of #(f(x+h)-f(x))/h#?
-
How do you find g(a+1) when g(x)=5x-3?
-
For the function f(x)= x^2+8x, how do you find and simplify f(x+h)-f(x)?
-
If #F(F(x))=16x-4# what is #F(x)# ?
-
How do you find the range of each function given the domain: #g(m)=m^2; {-2,0,2}#?
-
How do you find the range of each function given the domain: #h(n)=3n^2-2n+2; {-1,0,1}#?
-
How do you find the range of each function given the domain: #f(x)=-x/3+1;{-3,0,6}#?
-
Let #h(x)=12x+x^2#, how do you find a such that h(a)=-27?
-
How do you know whether the given value is a solution of the equation: 4x-9(6-5w)=44, w=3?
-
How do you know whether the given value is a solution of the equation: #9m-7m-5=17, and m=11#?
-
Given #f(x)=-3/4x-3/5#, for which value of x is f(x)=0?
-
How do you rewrite each explicit formula in function form #g_n=-6*(1/3)^(n-1)#?
-
How do you rewrite each explicit formula in function form #a_n=10-2(n-1)#?
-
How do you write the inverse function for #f(x)=1/2x+4#?
-
If #g(x)=x^2+3#, how do you find g (4)?
-
How do you evaluate the function #f(x)=x^2+2# at the given values of the variable f(9)?
-
How do you evaluate the function #f(x)=x^2+2# at the given values of the variable f(-2)?
-
How do you evaluate a function #f(x)=x+7# for a specific value, f(5)?
-
How do you evaluate a function #f(x)=x+7# for a specific value, f(-1)?
-
How do you evaluate a function #f(x)=x+7# for a specific value, f(-3)?
-
Question #45f8c
-
If #f(x)=2x^2+5sqrt(x+2)# how do you find f(0)?
-
Question #2d377
-
If #f ( x ) = 3x + 4#, what is f (x +2)?
-
Question #44017
-
Given #k(x)=6x+100#, how do you find k(-5)?
-
Given the relation #(2,3)#, #(3,4)# what is the inverse of this relation?
-
How do you solve the following exponential growth function for y when x=3 given #y=12^x#?
-
Given #f(x)=-3(1-x)# what is the value of f(-6)?
-
Given #f(x)=root3(x-8)# how do you find f(-208) and f(8)?
-
How do you find #(f-g)(x)# when #f(x)=6x^2+4x-7# and #g(x)=2x-7x^2+11#?
-
If #f (x)= -4x^2 -10# and #g (x)-5x^2- 2x-3#, how do you find #(f+ g)(x)#?
-
Given #f(x)=3x+5# and #g (x)= -8x- 10#, how do you find f(x)+g(x), f(x)-g(x), f(x)*g(x), #f(x)divg(x)#?
-
Given #f(x)=x+8, g(x)=x+8#, how do you find the values of x for which #f(x)/g(x)=32#?
-
Given #f(x)=x/(x-1)#, how do you find the values of x for which #f(x)=2/3#?
-
If #f(x)=(x-2)/(x+1)#, then #f(n+1)# is equal to what?
-
Let #f(x)=9x-8#, how do you find #(fof)(5)#?
-
For the function #f(x)=x^2-5#, how do you find #f(x+h)#?
-
Given that f(x)=2x -5, how do you find the value of x that makes f(x)=15?
-
Given #f(x)=3x+2# and #g(x)=x^2+4x#, how do you find (gof)(2)?
-
Let #f(x)=x^2-4# and #g(x)=4x#, how do you find #(f/g)(x)#?
-
Given the function #f(x)= 0.5abs(x -4)-3#, for what values x is f(x)=7?
-
Question #312d6
-
Question #b30ec
-
Question #b327c
-
How do you find inverse of the function?
-
Given the function #f(r)=sqrt(r+1)-5#, what is f(-1)?
-
Given the function #f(r)=sqrt(r+1)-5#, what is f(63)?
-
Given the function #f(r)=sqrt(r+1)-5#, what is f(x-1)?
-
What is #h(f(-2))# given #f(x)=x^2# and #h(x)=x+4#?
-
Let #f(x)=x^2-2x+5# and #g(x)=4/(x-1)#, how do you find #(fog)(3)#?
-
Given #f(x)=sqrt(7x+7)# and #g(x)=1/x#, how do you find #(f/g)(x)#?
-
If #f(x)=3(x+5)+4/x#, what is f(a+2)?
-
Given #f(x)=-4x+2#, how do you find f(x) when x=-1?
-
If f(x) = −2x + 8, what is f(−1.8)?
-
Given #f(x)=5x-12#, how do you evaluate f(3)?
-
Given #f(x)=5x-12#, how do you evaluate f(-4)?
-
Is y=1/2x-6 a function? Explain please.
-
Given #f(x)= x^2- 3x#, how do you write the expression for #f(a+ 2)#?
-
Given h(x)=4x−5, how do you solve for x when h(x)=−1?
-
If #f(x)=3x-4# and #g(x)=x^2#, how do you find the value of #f(3)-g(2)#?
-
Can #y=6# be considered a function of #x#?
-
Question #674b8
-
Given #N(p)=60p-p^2#, how do you find N(9)?
-
The function #b(n)= 12n# represents the number of baseballs b(n) that are needed for n games. How many baseballs are needed for 15 games?
-
The ordered pairs (1,36), (2, 49), (3,64). (4, 81). and (5, 100) represent a function. What is a rule that represents this function?
-
Question #4d4db
-
Question #54f6a
-
How do you find #g(f(5))# if #f(x)=x+1# and #g(x)=3x-2#?
-
How do you use #f (x)= 2x - 3# and #g(x)= 1-x^2# to evaluate f(g(0))?
-
Question #aa828
-
The binary operation □ is defined as a + b = ab+(a+b), where a and b are any two real numbers. The value of the identity element of this operation, defined as the number x such that a □ x = a, for any a, is ?
-
Question #9a31c
-
How do you evaluate #3-(-6) + (-h) + (-4)# where #h=-7#?
-
I need help solving this problem f(x)=2x^2+1 find and simplify f(x+2)-f(x)/2?
-
For the function #g(x)=x^3+x^2-6x#, how do you find g(1), g(-1)?
-
For the function #g(x)=x^3+x^2-6x#, how do you find at least one value of x for which g(x)=0?
-
What is the inverse function of #y=4x^2+3#?
-
Is #f(x) = x^4-64# an odd function or an even function?
-
Does the equation #x^2 +y= 169# define y as a function of x?
-
If #g(x)=abs(x-4)# what is the value of g (3)?
-
What's a function?
-
Solve #2+7+4(2-5)#?
-
Question #80d85
-
How do you evaluate #4y ^ { 2} + 5# when #y=3#?
-
If #h(x)=(x^2-5x-6)/(4-x)#, what is #h(-1). h(4)#, and #h(2)#?
-
Question #aa8b1
-
If #f(x) = 2 - x - x^2#, then what is #f(–1)+ f(0)#?
-
How do I find f #f*g# and #f/g# if #f(x)=(x^2+3x-4)# and #g(x)=(x+4)#?
-
Question #48e43
-
How do you find #f(-4)# when #f(x)=8x+11#?
-
If #f(x)=x^2-5x+1#, then #f(-3)# is __?
-
Question #5b2d5
-
Consider the points (-3,0), (-2,-3), (0,0), (1,5), and (2,5). map the input and the output values in a diagram. does the diagram represent a function? explain
-
What is the inverse of #f(x)=-5x+2#?
-
Question #cb6f9
-
Question #f690e
-
Question #9099e
-
Find the relation between points #(-4,19)#, #(0,5)# and #(3,-5.5)#?
-
If # f(x) = 3x # then find #f(t)#, #f(2t)# and #f(t+2)#?
-
If # g(x)=x^2+3x+1 # then show that #g(x+1)-g(x) = 2x+4#?
-
#f(x) = 1/x^2# for #x>=2# Then
#f(x) <=# ?
-
Question #a0d1e
-
H(-5)?
h(x) = 7?
Thank you for your help of this problem for me?
-
Question #4478f
-
Question #2a1a4
-
A={1,2,3,4,5,6};How many bijective functions #f:A->A#have the property that #f(1)!=2#?
-
What is the inverse function of #f(x)=3^x+2#?
-
#p(x)=3x^2-x^2+2x-5#, what is #p(x)# when #x=-2# and #x=3#?
-
Given #h( t ) = - 2( t+ 5) ^ { 2} + 4#, what is the value of #h(-8)#?
-
Question #7801b
-
Find the relation between #x# and #y#, if #y# takes values #{29,35,41,47,.......}#, when #x# takes values #{4,5,6,7,.....)#?
-
How do you know if a function is a function or not?
-
A function #f(x)# is defined as #f(x) = -8x^2#. What is #f(-3)#?
-
Question #9042c
-
If #g(x) = 9x^2+3x# how do you find #g(-3)#?
-
Question #e09aa
-
How do you evaluate the polynomial #-3x^3+8x^2-4x-6# for #x=4# and for #x=-4#?
-
If #f(x) = 3x^2-x#, what is #f(-5)#?
-
Question #9e045
-
What is #f(a+2)# if #f(x)=3x+5/x#?
-
Question #7c521
-
If #f(x)=-6x-3#, find #f(0)#?
-
If #f(x) = 6x - 4# and #f(a) = 26#, what is the value of #a#?
-
Let f(x) = 3^x-2. Find f(4) ?
-
Question #e5f88
-
Question #1f3de
-
Question #94246
-
Be f : A → B a function and X,Y ⊂ B. Show that:
any thoughts? thanks
-
Suppose that #f# is a linear function such that #f(3) = 6# and #f(-2) = 1#. What is #f(8)#?
-
Given that #f(x) = x/(5-x)#, what is #f(-4/5)#?
-
Question #c5c97
-
Question #46977
-
Evaluate ƒ(x) = –4x – 5 for x = –1.?
-
Question #5ba2e
-
What is the inverse of the function f(x) = 2x + 1?
-
If y = 3x + 5, what is the value of y when x = 12?
-
If y=2x+3, find y when x=5?
-
What is the value of?
-
If f(x)=4x-5,find the value of x for which f(x)=19?
-
If #u# and #v# are odd functions of #x#, what can be said about #(u+v)#,#(u-v)#,#(u/v)# and #u*v#? how do you find if they are Even, Odd or neither?